Orbital-free Modelling Method for Materials Contained Atoms with D-Electrons

Authors

  • Victor G. Zavodinsky  Institute for Material Science/Russian Academy of Sciences, Khabarovsk, Russia
  • Olga A. Gorkusha  Khabarovsk Department/Institute of Applied Mathematics/Russian Academy of Sciences, Khabarovsk, Russia

Keywords:

Orbital-free, Density Functional, d-atoms, Titanium, Cooper

Abstract

On the example of the Tin and Cun clusters with n up to 4 it is shown that an orbital-free (OF) version of the density functional theory (DFT) may be used for multiatomic systems containing atoms with d-electrons. The equilibrium interatomic distances and binding energies are found close to known experimental and calculated data. The OF results for Ti-Cu dimer are in satisfactory agreement with the Kohn-Sham results.

References

  1. H Hohenbeg, W. Kohn, Inhomogeneous Electron Gas, Physical Review, 1964, v136, B864-B871.
  2. W Kohn, J.L. Sham. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.
  3. L Hung, E.A. Carter. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.
  4. YA. Wang, E.A. Carter. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.
  5. Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.
  6. Baojing Zhou, V.L. Ligneres, E.A. Carter. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.
  7. VV. Karasiev, S.B. Trickey. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.
  8. TA. Wesolowski. Approximating the kinetic energy functional Ts[?]: lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.
  9. AM. Sarry, M.F. Sarry. To the density functional theory. Physics of Solid State, 2012, 54(6), 1315-1322.
  10. V.B. Bobrov, S.A. Trigger. The problem of the universal density functional and the density matrix functional theory. Journal of Experimental and Theoretical Physics, 2013, 116(4) 635-640.
  11. V.G. Zavodinsky, O.A. Gorkusha. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, vol. 56, No 11, pp. 2329-2335.
  12. V.G. Zavodinsky, O.A. Gorkusha. A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-47.
  13. V.G. Zavodinsky, O.A. Gorkusha. Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (3), P. 427-432.
  14. V.G. Zavodinsky, O.A. Gorkusha. Development of the orbital free approach for heteroatomic systems. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (6), P. 1010-1016.
  15. V.G. Zavodinsky, O.A. Gorkusha. New Orbital Free Simulation Method Based on the Density Functional Theory. Applied and Computational Mathematics, 2017 6(4): 189-195.
  16. Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems. Phys. Rev. B. 1981, 23, 5048-5079.
  17. Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method. Physical Review Letters. 1980, 45, 566-569.
  18. Perdew J.P., Wang Y. Accurate and simple density functional for the electronic exchange energy. Phys. Rev.B, 1986, 33, 8800-8802.
  19. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp. Phys. Commun. 1999, 119, 67-98.
  20. Morse M. D. Clusters of transition-metal atoms. Chem. Rev. 1986, 86, 1049-1109.
  21. M. Salazar-Villanueva, P.H. Hernandez Tejeda, U. Pal, J.F. Rivas-Silva, J.I. Rodriguez Mora, J.A. Ascencio. Stable Tin (n = 2-15) clusters and their geometries: DFT calculations. Journal of Physical Chemistry A. 2006, 110, 10274-10278.
  22. Jijun Zhao, Qi Qiu, Baolin Wang, Jinlan Wang, Guanghou Wang. Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential. Solid State Communications 118 (2001) 157-161.
  23. S. H. Wei, Zhi Zeng, J. Q. You, X. H. Yan, and X. G. Gong. A density-functional study of small titanium clusters. J. Chem. Phys. 113, 11127-11133 (2000); doi: 10.1063/1.1319646.
  24. R.S. Ram. C.N. Jarman, P.F. Bernath. Fourier transform emission spectroscopy of the copper dimer. J. Mol. Spectrosc. 156, 468-486 (1992).
  25. M.D. Morse. Advance in Metal and Semiconductor Clusters (JAI Press, Greenwich CT, 1993).
  26. Li, S.; Alemany, M. M. G.; Chelikowsky, J. R. J. Chem. Phys. 2006, 125, 034311.
  27. D.A. Kilimis, D.G. Papageorgiou. Structural and electronic properties of small bimetallic Ag-Cu clusters. Eur. Phys. J. D 56, 189-197 (2010).
  28. Mustafa Bykata; Jadson C. Belchior. Structural and energetic analysis of copper clusters: MD study of Cun (n = 2-45). J. Braz. Chem. Soc. vol.19 no.5 2008.
  29. G.L. Gutsev, M.D. Mochena, P. Jena, C.W.Bauschlicher,Jr. H.Partridge III. Periodic table of 3d-metal dimmers and their ions. JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 148 2004. 6785-6797.

Downloads

Published

2018-09-30

Issue

Section

Research Articles

How to Cite

[1]
Victor G. Zavodinsky, Olga A. Gorkusha, " Orbital-free Modelling Method for Materials Contained Atoms with D-Electrons, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 3, Issue 7, pp.57-62, September-October-2018.