Millimeter Wave Communications for Path Loss Data for Small Cell Fifth-Generation (5G) Wireless Networks Channel Modeling

Authors

  • Srihari Chintha  Research Scholar, Department of Computer Science & Engineering, Sunrise University, Alwar, Rajasthan, India
  • Dr. Sudhir Dawra  Supervisor, Department of Computer Science & Engineering, Sunrise University, Alwar, Rajasthan, India

Keywords:

mmWave, 5G, 28 GHz, 38 GHz, 73 GHz, Propagation, Path Loss, And Outage, Omnidirectional Models

Abstract

This paper provides 28- and 73-GHz urban omnidirectional propagation large-scale path loss data measured in downtown New York City during the summers of 2012 and 2013, and 38 GHz data measured in downtown Austin in the summer of 2011. The data provided herein may be used by antenna, propagation, and communications researchers for emerging mobile and/or backhaul millimeter-wave (mmWave) system analyses. This paper also presents measurement layout maps with transmitter and receiver locations and GPS coordinates, so that anyone may create similar or new measurements and models, or may perform further processing, such as with ray-tracers and modeling tools, in addition to studying mmWave system performance. Using the data provided herein, large-scale path loss models using a standard close-in 1 meter free-space reference distance are provided for each of the three frequency bands.

References

  1. T. S. Rappaport et al.,'Millimeter wave mobile communications for 5G cellular: It will work!'IEEE Access, vol. 1, pp. 335 349, Mar. 2013.
  2. G. R. MacCartney, Jr., and T. S. Rappaport,'73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul com-munications in New York City,'in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 4862 4867.
  3. T. S. Rappaport, G. R. MacCartney, Jr., M. K. Samimi, and S. Sun,'Wideband millimeter-wave propagation measurements and channel mod-els for future wireless communication system design (Invited Paper),'IEEE Trans. Commun., vol. 63, no. 9, pp. 3029 3056, Sept. 2015.
  4. T. S. Rappaport, F. Gutierrez, Jr., E. Ben-Dor, J. N. Murdock, Y. Qiao, and J.   I. Tamir,'Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular commu-nications,'IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1850 1859, Apr. 2013.
  5. T. S. Rappaport, Wireless Communications: Principles and Practice,2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
  6. T. S. Rappaport, R. W. Heath, Jr., R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications. Upper Saddle River, NJ, USA: Prentice-Hall, 2015.
  7. G. R. MacCartney, Jr., M. K. Samimi, and T. S. Rappaport,'Omnidirec-tional path loss models in New York City at 28 GHz and 73 GHz,'in Proc. IEEE 25th Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Sep. 2014, pp. 227 231.
  8. A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney, Jr.,1.    S. Rappaport, and A. Alsanie,'Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands,'IEEE Commun. Mag., vol. 52, no. 9, pp. 78 86, Sep. 2014.
  9. M. K. Samimi, T. S. Rappaport, and G. R. MacCartney, Jr.,'Probabilistic omnidirectional path loss models for millimeter-wave outdoor communi-cations,'IEEE Wireless Commun. Lett., pp. 1 4, Mar. 2015.
  10. K. R. Schaubach, N. J. Davis, and T. S. Rappaport,'A ray tracing method for predicting path loss and delay spread in microcellular envi-ronments,'in Proc. IEEE 42nd Veh. Technol. Conf., vol. 2. May 1992, pp. 932 935.
  11. G. Durgin, N. Patwari, and T. S. Rappaport,'An advanced 3D ray launch-ing method for wireless propagation prediction,'in Proc. IEEE 47th Veh. Technol. Conf., vol. 2. May 1997, pp. 785 789.
  12. T. Abbas, C. Gustafson, and F. Tufvesson,'Pathloss estimation tech-niques for incomplete channel measurement data,'in Proc. COST IC 10th Manage. Committee Sci. Meeting, 2014, pp. 1 5.
  13. J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S. Rappaport,'A 38 GHz cellular outage study for an urban outdoor campus environ-ment,'in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2012, pp. 3085 3090.
  14. S. Sun, G. R. MacCartney, Jr., M. K. Samimi, and T. S. Rappaport,'Synthesizing omnidirectional received power and path loss from direc-tional measurements at millimeter-wave frequencies,'in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2015.
  15. T. A. Thomas, H. C. Nguyen, G. R. MacCartney, Jr., and T. S. Rappaport,'3D mmWave channel model proposal,'in Proc. IEEE 80th Veh. Technol. Conf. (VTC Fall), Sep. 2014, pp. 1 6.
  16. A. Ghosh et al.,'Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks,'IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1152 1163, Jun. 2014.
  17. S. Hur et al.,'Millimeter-wave channel modeling on 28 GHz,'in Proc. COST IC 1004-9th MC & Meeting, Feb. 2014.
  18. S. Hur et al.,'Millimeter-wave channel modeling based on measurements in in-building, campus and urban environments at 28 GHz,'in Proc. COST IC 1004-11th MC & Meeting, Sep. 2014.
  19. S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan,'MIMO for millimeter-wave wireless communications: Beamforming, spatial mul-tiplexing, or both?'IEEE Commun. Mag., vol. 52, no. 12, pp. 110 121, Dec. 2014.

Downloads

Published

2017-10-30

Issue

Section

Research Articles

How to Cite

[1]
Srihari Chintha, Dr. Sudhir Dawra, " Millimeter Wave Communications for Path Loss Data for Small Cell Fifth-Generation (5G) Wireless Networks Channel Modeling, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 1, Issue 2, pp.171-176, September-October-2016.