A Multi-Item Inventory Model with Demand-Dependent Unit Cost : A Geometric Programming Approach with GA-SVM

Authors(1) :-Dr. M. Raja Sekar

Multi-item inventory models are developed with and without back-orders where demand is related to the unit price as price is inversely proportional to demand. The models are associated with infinite/finite storage capacities. In total, there are four multi-item inventory models which are formulated with the cost functions and with/without constraints in the form of signomilas and solved by both a modified geometric programming technique and gradient-based non-linear programming method. For each model, sensitivity analysis with respect to the degree of economies of scale and invariant cost parameters are also presented. Each case is illustrated with numerical example and the results from two methods are compared.

Authors and Affiliations

Dr. M. Raja Sekar
Professor, CSE Department VNRVJIET, Hyderabad, Telangana, India

Genetic Algorithms, Support Vector machines, Geometric Programming, Inventory models, EOQ and Demand dependent.

  1. Abdel-Mottaleb,M., Elgammal, A., "Face Detection in complex environments from color images,’’ IEEE ICIP, pp. 622- 626, Oct. 2016.
  2. Aizerman, M., Braverman, E., Rozonoer, L.. "Theoretical foundations of the potential function method in pattern recognition learning". Automation and Remote Control25: 821-837, 2014.
  3. Antonio J. Colmenarez and Thomas S. Huang. Face detection with information-based maximum discrimination. In Computer Vision and Pattern Recognition, pp 782-787, 2015.
  4. Bellaire, G., Schluns, K.,  Oppermann, K.,  Schimke, W.,  "Matching Using Object Models Generated from Photometric Stereo Images", Proc. Machine Vision Applications in Industrial Inspection IV, SPIE Vol. 2665, San Jose, Califomia, pp. 70-81, 2015.
  5. M.Raja Sekar, "Region classification using  SVMs", Journal of Geomatics, pp 87-89, 2007.
  6. M.Raja Sekar, "Automatic Vehicle Identification" Journal of Advanced Research in Computer Engineering, pp 0974-4320,  2015.
  7. M.Raja Sekar "FER from Image sequence using SVMs ", Journal of Data Engineering and computer science, pp 80-89, 2016.
  8. Burges, C. J. C.,  A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):pp 121-167, 2015.
  9. Behrooz Kamgar-Parsi, Behzad Kamgar-Parsi, Jain, A., Dayhoff, J., "Aircraft Detection: A Case Study in Using Human Similarity Measure", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 23, No. 12, 2001, pp. 1404-1414,2016.
  10. Beymer, D. J.,  Face recognition under varying pose. AI Memo 1461, Center for Biological and Computational Learning, M.I.T., Cambridge, MA, 2016.
  11. Brunelli, R., Poggio, T.,  Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042-1052, 2015.
  12. CHAPELLE, O., HAFFNE,R, P., AND VAPNIK, V. N. Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10, 5, 1055-1064, 2016.
  13. Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, T.S., Facial Expression Recogni- tion From Video Sequences. In IEEE Intl Conf. on Multimedia and Expo (ICME), volume 2, pages 121 - 124, 2014.
  14. DORK ŽO, G., AND SCHMID, C. Selection of scale-invariant parts for object class recognition. In IEEE International Conference on Computer Vision, vol. 1, pp. 634-639,2016.
  15. Daugman, J.G.,  "Uncertainty Relation for Resolution in Space,  Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters", Journal of Optical Society America A, Vol. 2, No. 7, 1985, pp. 1160 - 1169, 2016.
  16. FONSECA, E. S., R. C. GUIDO, A. C. S., AND PEREIRA, J. C., Discrete wavelet transform and support vector machine applied to pathological voice signals identifiction. In IEEE International Symposium on Multimedia ,2017.
  17. M.Raja Sekar, " Image Authentication using SVMs", Journal of Advanced Research in computer Engineering, p367-p374, 2015.
  18. M.Raja Sekar, "Classification of images using SVMs", International Journal of Mathematics, Computer Sciences and Information Technology, p25-29,2014.
  19. M.Raja Sekar, "Analysis of Images Using SVMS" International Journal of Mathematics, Computer Sciences and Information, p 197-201,2015.
  20. M.Raja Sekar, "Implementation of recursive construction for building effective compression strategy", JRRECS, P23-28, 2013.
  21. M.Raja Sekar, "An Effective Atlas-guided Brain image identification using X-rays", IJSER, P23-29,2016.
  22. J.Dugelay, J.,-C. Junqua, C., Kotropoulos, R., Kuhn, F., Perronnin, I., Pitas,L.,, "Recent Advances in Biometric Person Authentication", Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Orlando,  Vol. IV, pp. 4060-4062, 2015.

Publication Details

Published in : Volume 2 | Issue 6 | November-December 2017
Date of Publication : 2017-12-31
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 919-923
Manuscript Number : CSEIT1726259
Publisher : Technoscience Academy

ISSN : 2456-3307

Cite This Article :

Dr. M. Raja Sekar, "A Multi-Item Inventory Model with Demand-Dependent Unit Cost : A Geometric Programming Approach with GA-SVM", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 2, Issue 6, pp.919-923, November-December-2017.
Journal URL : http://ijsrcseit.com/CSEIT1726259

Article Preview