Recent Trends in Background Subtraction Approach for Moving Object Detection

Authors(2) :-Rudrika Kalsotra, Sakshi Arora

Background Subtraction has attained much attentiveness in recent years due to potential growth in the field of intelligent video analytics. It is widely used technique for detecting moving objects from videos because of its flexibility and reliability. This paper presents a comprehensive survey of background subtraction approach. It highlights various applications, challenges and methods of background subtraction. The recent developments in conventional as well as in deep-learning approaches in the field of background subtraction are presented in this paper. In addition to this, future research directions in background subtraction are also outlined in the end.

Authors and Affiliations

Rudrika Kalsotra
Department of Computer Science and Engineering Shri Mata Vaishno Devi University Katra, J&K, India
Sakshi Arora
Department of Computer Science and Engineering Shri Mata Vaishno Devi University Katra, J&K, India

Intelligent Video Analytics; Moving Object Detection; Foreground Object; Background Subtraction; Deep-learning

  1. Liu, H., Chen, S., & Kubota, N. (2013). Intelligent video systems and analytics: A survey. IEEE Transactions on Industrial Informatics, 9(3), 1222-1233.
  2. Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. Acm computing surveys (CSUR), 38(4), 13.
  3. Mishra, P. K., & Saroha, G. P. (2016, March). A study on video surveillance system for object detection and tracking. In Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on (pp. 221-226). IEEE.
  4. Shaikh, S. H., Saeed, K., & Chaki, N. (2014). Moving Object Detection Using Background Subtraction. In Moving Object Detection Using Background Subtraction (pp. 15-23). Springer International Publishing.
  5. Hu, W., Tan, T., Wang, L., & Maybank, S. (2004). A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 34(3), 334-352.
  6. Tiwari, M., & Singhai, R. (2017). A Review of Detection and Tracking of Object from Image and Video Sequences. International Journal of Computational Intelligence Research, 13(5), 745-765.
  7. Destalem, K., Cho, J., Lee, J., Park, J. H., & Yoo, J. (2015). Dynamic background updating for lightweight moving object detection. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 9(8).
  8. Zhang, H., & Zhang, H. (2013, April). A moving target detection algorithm based on dynamic scenes. In Computer Science & Education (ICCSE), 2013 8th International Conference on (pp. 995-998). IEEE.
  9. Gang, L., Shangkun, N., Yugan, Y., Guanglei, W., & Siguo, Z. (2013, July). An improved moving objects detection algorithm. In Wavelet Analysis and Pattern Recognition (ICWAPR), 2013 International Conference on (pp. 96-102). IEEE.
  10. Cheng, F. C., & Ruan, S. J. (2012). Accurate motion detection using a self-adaptive background matching framework. IEEE Transactions on Intelligent Transportation Systems, 13(2), 671-679.
  11. Bouwmans, T. (2014). Traditional and recent approaches in background modeling for foreground detection: An overview. Computer Science Review, 11, 31-66.
  12. Zhang, W., Wu, Q. J., & bing Yin, H. (2010). Moving vehicles detection based on adaptive motion histogram. Digital Signal Processing, 20(3), 793-805.
  13. Li, Y., Wang, S., Tian, Q., & Ding, X. (2015). Feature representation for statistical-learning-based object detection: A review. Pattern Recognition, 48(11), 3542-3559.
  14. Yeh, C. H., Lin, C. Y., Muchtar, K., & Kang, L. W. (2014). Real-time background modeling based on a multi-level texture description. Information Sciences, 269, 106-127.
  15. Sargano, A. B., Angelov, P., & Habib, Z. (2017). A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. Applied Sciences, 7(1), 110.
  16. Christiansen, P., Nielsen, L. N., Steen, K. A., Jørgensen, R. N., & Karstoft, H. (2016). DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field. Sensors, 16(11), 1904.
  17. Sobral, A., & Vacavant, A. (2014). A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding, 122, 4-21.
  18. Kamate, S., & Yilmazer, N. (2015). Application of object detection and tracking techniques for unmanned aerial vehicles. Procedia Computer Science, 61, 436-441.
  19. Zaitoun, N. M., & Aqel, M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science, 65, 797-806.
  20. Huang, Q., Gao, W., & Cai, W. (2005). Thresholding technique with adaptive window selection for uneven lighting image. Pattern recognition letters, 26(6), 801-808.
  21. SG, A., Karibasappa, K., & Reddy, B. E. (2013).Video segmentation for moving object detection using local change & entropy based adaptive window thresholding. Computer Science & Information Technology, 3(9), 155-166.
  22. Heikkila, J., & Silvén, O. (2004). A real-time system for monitoring of cyclists and pedestrians. Image and Vision Computing, 22(7), 563-570.
  23. Babaee, M., Dinh, D. T., & Rigoll, G. (2017). A deep convolutional neural network for background subtraction. arXiv preprint arXiv:1702.01731.
  24. Zhang, X., Zhu, C., Wang, S., Liu, Y., & Ye, M. (2016). A Bayesian Approach for Camouflaged Moving Object Detection. IEEE Transactions on Circuits and Systems for Video Technology.
  25. Xiang, J., Fan, H., Liao, H., Xu, J., Sun, W., & Yu, S. (2014). Moving object detection and shadow removing under changing illumination condition. Mathematical Problems in Engineering, 2014.
  26. Bouwmans, T. (2011). Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Patents on Computer Science, 4(3), 147-176.
  27. Yeh, C. H., Lin, C. Y., Muchtar, K., Lai, H. E., & Sun, M. T. (2017). Three-Pronged Compensation and Hysteresis Thresholding for Moving Object Detection in Real-Time Video Surveillance. IEEE Transactions on Industrial Electronics, 64(6), 4945-4955.
  28. Maddalena, L., & Petrosino, A. (2014). The 3dSOBS+ algorithm for moving object detection. Computer Vision and Image Understanding, 122, 65-73.
  29. Chen, S., Xu, T., Li, D., Zhang, J., & Jiang, S. (2016). Moving object detection using scanning camera on a high-precision intelligent holder. Sensors, 16(10), 1758.
  30. Zhou, X., Yang, C., & Yu, W. (2013). Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 597-610.
  31. Wu, Y., He, X., & Nguyen, T. Q. (2017). Moving Object Detection With a Freely Moving Camera via Background Motion Subtraction. IEEE Transactions on Circuits and Systems for Video Technology, 27(2), 236-248.
  32. Wang, L., & Sng, D. (2015). Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey. arXiv preprint arXiv:1512.03131.
  33. Ouyang, W., Zeng, X., Wang, X., Qiu, S., Luo, P., Tian, Y., ... & Wang, K. (2017). DeepID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks. IEEE transactions on pattern analysis and machine intelligence, 39(7), 1320-1334.
  34. Zhang, Y., Li, X., Zhang, Z., Wu, F., & Zhao, L. (2015). Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing, 168, 454-463.
  35. Braham, M., & Van Droogenbroeck, M. (2016, May). Deep background subtraction with scene-specific convolutional neural networks. In Systems, Signals and Image Processing (IWSSIP), 2016 International Conference on(pp. 1-4). IEEE.
  36. Wang, Y., Luo, Z., & Jodoin, P. M. (2016). Interactive deep learning method for segmenting moving objects. Pattern Recognition Letters.
  37. Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). CDnet 2014: an expanded change detection benchmark dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 387-394).
  38. Vacavant, A., Chateau, T., Wilhelm, A., & Lequièvre, L. (2012, November). A benchmark dataset for outdoor foreground/background extraction. In Asian Conference on Computer Vision (pp. 291-300). Springer, Berlin, Heidelberg.

Publication Details

Published in : Volume 2 | Issue 7 | September 2017
Date of Publication : 2017-09-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 261-271
Manuscript Number : CSEIT174431
Publisher : Technoscience Academy

ISSN : 2456-3307

Cite This Article :

Rudrika Kalsotra, Sakshi Arora, "Recent Trends in Background Subtraction Approach for Moving Object Detection", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 2, Issue 7, pp.261-271, September-2017.
Journal URL :

Article Preview