Effective Incentive Compatible Model for Privacy Preservation of Information in Secure Data Sharing and Publishing

Authors(2) :-Mahesh Dumbere, Roshani Talmale

Privacy preserving is one of the most important research topics in the data security field and it has become a serious concern in the secure transformation of personal data in recent years. For example, different credit card companies and disease control centers may try to build better data sharing or publishing models for privacy protection through privacy preserving data mining techniques (PPDM). A model has been proposed to design the effective Privacy Preserving Mining Framework for secure private information transformation and Publishing. Building this framework depends on Incentive Compatible Model based secure code computation process and PPDM techniques like Association rule mining, Randomization method and Cryptographic technique. An Encryption algorithm is used to identify which data sets need to be encrypted for preserving privacy in data storage publishing. The Incentive Compatible model is very efficient in protecting the sensitive data in privacy preserving data sharing, because it provides the secrecy against not only semi-honest adversary model and also the malicious model.

Authors and Affiliations

Mahesh Dumbere
Department of Computer Science and Engineering, TGPCET Nagpur, Maharashtra, India
Roshani Talmale
Department of Computer Science and Engineering, TGPCET Nagpur, Maharashtra, India

Privacy Preserving, Privacy preserving data mining, Data publishing privacy, secure code computation

  1. Li Liu , Murat Kantarcioglu and Bhavani Thuraisingham “Privacy Preserving Decision Tree Mining from Perturbed Data”,In Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009.
  2. M. Kantarcioglu and O. Kardes, “Privacy-Preserving Data Mining in the Malicious Model,” Int’l J. Information and Computer Security, vol. 2, pp. 353-375, Jan. 2009.
  3. M. Kantarcioglu, C. Clifton, “Privacy-Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data”, IEEE Transactions on Knowledge and Data Engineering, Vol. 16,No. 9, pp. 1026-1037, 2004.
  4. Murat Kantarcioglu and Wei Jiang, “Incentive Compatible Privacy-Preserving Data Analysis”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 6, JUNE 2013.
  5. Rakesh Agrawal and Evimaria Terzi , “On Honesty in Sovereign Information Sharing,” Proc. Int’l Conf. Advances in Database Technology, pp. 240-256, 2006.

Publication Details

Published in : Volume 3 | Issue 4 | March-April 2018
Date of Publication : 2018-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 1291-1296
Manuscript Number : CSEIT183124
Publisher : Technoscience Academy

ISSN : 2456-3307

Cite This Article :

Mahesh Dumbere, Roshani Talmale, "Effective Incentive Compatible Model for Privacy Preservation of Information in Secure Data Sharing and Publishing ", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 3, Issue 4, pp.1291-1296, March-April-2018.
Journal URL : http://ijsrcseit.com/CSEIT183124

Article Preview

Follow Us

Contact Us