A Vision, Architectural Elements, and Future direction of Internet of Things (IoT)

Authors(1) :-Dr. I. Lakshmi

Universal detecting empowered by Wireless Sensor Network (WSN) advances cuts crosswise over numerous zones of current living. This offers the capacity to quantify, induce and comprehend ecological pointers, from sensitive ecologies and normal assets to urban situations. The expansion of these gadgets in a conveying impelling system makes the Internet of Things (IoT), wherein, sensors and actuators mix flawlessly with nature around us, and the data is shared crosswise over stages to build up a typical working picture (COP). Fuelled by the current adjustment of an assortment of empowering remote advances, for example, RFID labels and implanted sensor and actuator hubs, the IoT has ventured out of its early stages and is the following progressive innovation in changing the Internet into a completely incorporated Future Internet. As we move from www (static pages web) to web2 (informal communication web) to web3 (pervasive processing web), the requirement for information on-request utilizing complex instinctive inquiries increments essentially. This paper introduces a Cloud driven vision for overall execution of Internet of Things. The key empowering advancements and application spaces that are probably going to drive IoT look into sooner rather than later are talked about. A Cloud execution utilizing Aneka, which depends on collaboration of private and open Clouds, is exhibited. We close our IoT vision by developing the requirement for merging of WSN, the Internet and dispersed processing coordinated at innovative research group.

Authors and Affiliations

Dr. I. Lakshmi
Department of Computer Science, Stella Maris College, Chennai, Tamil Nadu, India

Internet of Things; Ubiquitous sensing; Cloud Computing; Wireless Sensor Networks; RFID; Smart Environments

  1. K. Ashton, That -Internet of Things? Thing, RFiD Journal. (2009).
  2. H. Sundmaeker, P. Guillemin, P. Friess, S. Woelffle, Vision and challenges for realising the Internet of Things, Cluster of European Research Projects on the Internet of Things - CERP IoT, 2010.
  3. J. Buckley, ed., The Internet of Things: From RFID to the Next-Generation Pervasive Networked Systems, Auerbach Publications, New York, 2006.
  4. M. Weiser, R. Gold, The origins of ubiquitous computing research at PARC in the late 1980s, IBM Systems Journal. (1999).
  5. Y. Rogers, Moving on from weiser's vision of calm computing: Engaging ubicomp experiences, UbiComp 2006: Ubiquitous Computing. (2006).
  6. R. Caceres, A. Friday, Ubicomp Systems at 20: Progress, Opportunities, and Challenges, IEEE Pervasive Computing 11 (2012) 14-21.
  7. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless Sensor Networks: A Survey, Computer Networks (2002) 393-422.
  8. L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey, Computer Networks 54 (2010) 2787-2805.
  9. J. Belissent, Getting Clever About Smart Cities: New Opportunities Require New Business Models, Forrester Research, 2010.
  10. Gartner's Hype Cycle Special Report for 2011, Gartner Inc. http://www.gartner.com/technology/research/hype-cycles/ (2012).
  11. Google Trends, Google. http://www.google.com/trends (n.d.).
  12. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation Computer Systems 25 (2009) 599-616.
  13. S. Tilak, N. Abu-Ghazaleh, W. Heinzelman, A taxonomy of wireless micro-sensor network models, Acm Mobile Computing and Communications Review. 6 (2002) 28-36.
  14. M. Tory, T. Moller, Rethinking Visualization: A High-Level Taxonomy, Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on. (2004) 151-158.
  15. E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, et al., Building the Internet of Things Using RFID The RFID Ecosystem Experience, IEEE Internet Computing 13 (2009) 48-55.
  16. A. Juels, RFID security and privacy: A research survey, IEEE Journal of Selected Areas in Communication 24 (2006) 381-394.
  17. A. Ghosh, S.K. Das, Coverage and connectivity issues in wireless sensor networks: A survey, Pervasive and Mobile Computing. 4 (2008) 303- 334.
  18. Y. Sang, H. Shen, Y. Inoguchi, Y. Tan, N. Xiong, Secure Data Aggregation in Wireless Sensor Networks: A Survey, in: 2006: pp. 315-320.
  19. M. Zorzi, A. Gluhak, S. Lange, A. Bassi, From Today's Intranet of Things to a Future Internet of Things: A Wirelessand Mobility-Related View, IEEE Wireless Communication 17 (2010) 43-51.
  20. N. Honle, U.P. Kappeler, D. Nicklas, T. Schwarz, M. Grossmann, Benefits of Integrating Meta Data into a Context Model, in: 2005: pp. 25- 29.
  21. A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo, A Survey on Facilities for Experimental Internet of Things Research, IEEE Communications Magazine 49 (2011) 58-67.
  22. L. Haiyan, C. Song, W. Dalei, N. Stergiou, S. Ka-Chun, A remote markerless human gait tracking for e-healthcare based on content-aware wireless multimedia communications, IEEE Wireless Communication 17 (2010) 44-50.
  23. G. Nussbaum, People with disabilities: assistive homes and environments, Computers Helping People with Special Needs. (2006).
  24. A. Alkar, U. Buhur, An Internet based wireless home automation system for multifunctional devices, IEEE Transactions on Consumer Electronics 51 (2005) 1169-1174.
  25. M. Darianian, M.P. Michael, Smart Home Mobile RFIDbased Internet-Of-Things Systems and Services, 2008 International Conference on Advanced Computer Theory and Engineering. (2008) 116-120.
  26. H.S. Ning, Z.O. Wang, Future Internet of Things Architecture: Like Mankind Neural System or Social Organization Framework? IEEE Communication Letters 15 (2011) 461-463.
  27. L. Atzori, A. Iera, G. Morabito, SIoT: Giving a Social Structure to the Internet of Things, IEEE Communication Letters 15 (2011) 1193-1195.
  28. X. Li, R.X. Lu, X.H. Liang, X.M. Shen, J.M. Chen, X.D. Lin, Smart Community: An Internet of Things Application, IEEE Communication Magazine 49 (2011) 68-75.
  29. C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, et al., The Aware Home: A living laboratory for ubiquitous computing research, in: Lecture Notes in Computer Science 1999: pp. 191-198.
  30. S.R.L. Labs, Future Retail Centeer, SAP Research Living Labs. http://www.sap.com/corporate-en/ourcompany/innovation/research/livinglabs/ futureretail/ index.epx (n.d.).
  31. J. Hernández-Muñoz, J. Vercher, L. Muñoz, Smart cities at the forefront of the future internet, The Future Internet. (2011).
  32. R.N. Murty, G. Mainland, I. Rose, A.R. Chowdhury, A. Gosain, J. Bers, et al., CitySense: An Urban-Scale Wireless Sensor Network and Testbed, in: 2008: pp. 583-588.
  33. System of Monitoring and Environmental Surveillance, http://www.dimap.es/enviromental-agriculture-services.html (2011).
  34. S. Bainbridge, C. Steinberg, M. Furnas, GBROOS-An Ocean Observing System for the Great Barrier Reef, International Coral Reef Symposium. (2010) 529-533.
  35. R. Johnstone, D. Caputo, U. Cella, A. Gandelli, C. Alippi, F. Grimaccia, et al., Smart Environmental Measurement & Analysis Technologies (SEMAT): Wireless sensor networks in the marine environment, in: Stockholm, 2008.
  36. M. Zhang, T. Yu, G.F. Zhai, Smart Transport System Based on -The Internet of Things,? Amm. 48-49 (2011) 1073- 1076.
  37. H. Lin, R. Zito, M. Taylor, A review of travel-time prediction in transport and logistics, Proceedings of the Eastern Asia Society for Transportation Studies. 5 (2005) 1433-1448.
  38. M. Yun, B. Yuxin, Research on the architecture and key technology of Internet of Things (IoT) applied on smart grid, Advances in Energy Engineering (ICAEE). (2010) 69-72.
  39. I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless multimedia sensor networks, Computer Networks 51 (2007) 921-960.
  40. H. Jun-Wei, Y. Shouyi, L. Leibo, Z. Zhen, W. Shaojun, A Crop Monitoring System Based on Wireless Sensor Network, Procedia Environmental Sciences. 11 (2011) 558-565.
  41. P. Kumar, S. Ranganath, W. Huang, K. Sengupta, Framework for real-time behavior interpretation from traffic video, IEEE Transactions on Intelligent Transportation Systems. 6 (2005) 43-53.
  42. V. Mayer-Schönberger, Failing to Forget the -Drunken Pirate,? in: Delete: the Virtue of Forgetting in the Digital Age (New in Paper), 1st ed, Princeton University Press, 2011: pp.3-15.
  43. T.S. Lopez, D.C. Ranasinghe, M. Harrison, D. McFarlane, Adding sense to the Internet of Things An architecture framework for Smart Objective systems, Pervasive Ubiquitous Computing 16 (2012) 291-308.
  44. Y. Wei, K. Sukumar, C. Vecchiola, D. Karunamoorthy, R. Buyya, Aneka Cloud Application Platform and Its Integration with Windows Azure, in: R. Ranjan, J. Chen, B. Benatallah, L. Wang (Eds.), Cloud Computing: Methodology, Systems, and Applications, 1st ed, CRC Press, Boca Raton, 2011: p. 30.
  45. C. Vecchiola, R.N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-driven provisioning of resources for scientific applications in hybrid clouds with Aneka, in: Future Generation Computer Systems, 2012: pp. 58-65.
  46. J. Gubbi, K. Krishnakumar, R. Buyya, M. Palaniswami, A Cloud Computing Framework for Data Analytics in Smart City Applications, Technical Report No. CLOUDS-TR-2012- 2A, Cloud Computing and Distributed Systems Laboratory, The University of Melbourne, 2012.
  47. A.P. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, M. Zorzi, Architecture and protocols for the Internet of Things: A case study, in: 2010: pp. 678-683.
  48. SENSEI, Integrated EU Project - 7th Framework. http://www.ict-sensei.org/index.php (n.d.).
  49. European Lighthouse Integrated Project - 7th Framework, Internet of Things - Architecture. http://www.iot-a.eu/ (2012).
  50. R.K. Rana, C.T. Chou, S.S. Kanhere, N. Bulusu, W. Hu, Earphone: an end-to-end participatory urban noise mapping system, in: ACM Request Permissions, 2010.
  51. D. Donoho, Compressed sensing, IEEE Transactions on Information Theory. 52 (2006) 1289-1306.
  52. W. Bajwa, J. Haupt, A. Sayeed, R. Nowak, Compressive wireless sensing, in: ACM, 2006.
  53. D.B. Neill, Fast Bayesian scan statistics for multivariate event detection and visualization, Statistics in Medicine 30 (2011) 455-469.
  54. M. Navajo, I. Ballesteros, S. D'Elia, A. Sassen, M. Goyet, J. Santaella, et al., Draft Report of the Task Force on Interdisciplinary Research Activities applicable to the Future Internet., European Union Task Force Report, 2010.
  55. D. Tang, Event detection in sensor networks, School of Engineering and Applied Sciences, The George Washington University, 2009.
  56. L.M. Kaufman, Data Security in the World of Cloud Computing, IEEE Security and Privacy Magazine, 7 (2009) 61-64.
  57. E. Vera, L. Mancera, S.D. Babacan, R. Molina, A.K. Katsaggelos, Bayesian compressive sensing of wavelet coefficients using multiscale Laplacian priors, Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on. (2009) 229-232.
  58. H. El-Sayed, A. Mellouk, L. George, S. Zeadally, Quality of service models for heterogeneous networks: overview and challenges, Annals of Telecommunication 63 (2008) 639-668.
  59. I. Demirkol, C. Ersoy, F. Alagoz, MAC protocols for wireless sensor networks: A survey, IEEE Communication Magazine 44 (2006) 115- 121.
  60. J. Al-Karaki, A. Kamal, Routing techniques in wireless sensor networks: A survey, IEEE Wireless Communication 11 (2004) 6-28.
  61. A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson, People-centric urban sensing, in: ACM, 2006.
  62. E. Kanjo, NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping, Mobile Network Application 15 (2009) 562-574.
  63. S. Santini, B. Ostermaier, A. Vitaletti, First experiences using wireless sensor networks for noise pollution monitoring, ACM, Glasgow, Scotland, 2008.
  64. S. Kuznetsov, E. Paulos, Participatory sensing in public spaces: activating urban surfaces with sensor probes, in: ACM Request Permissions, 2010.
  65. R. Honicky, E.A. Brewer, E. Paulos, R. White, N-smarts: networked suite of mobile atmospheric real-time sensors, in: ACM, 2008: pp. 25- 29.
  66. R.V. Kulkarni, A. Förster, G.K. Venayagamoorthy, Computational Intelligence in Wireless Sensor Networks: A Survey, IEEE Communications Surveys & Tutorials. 13 (2011) 68-96.
  67. Y. Bengio, Learning Deep Architectures for AI, 1st ed. Now Publishers Inc, 2009.
  68. G.P. Bonneau, G.M. Nielson, F. Post, eds., Data Visualization: The state of the art, Kluver Academic, London, 2003.
  69. L. Ren, F. Tian, X. Zhang, L. Zhang, DaisyViz: A modelbased user interface toolkit for interactive information visualization systems, Journal of Visual Languages & Computing 21 (2010) 209-229.

Div Tables are a great way to layout website sections on the page! Make sure you bookmark this useful free online tool!

Publication Details

Published in : Volume 3 | Issue 1 | January-February 2018
Date of Publication : 2018-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 477-479
Manuscript Number : CSEIT183192
Publisher : Technoscience Academy

ISSN : 2456-3307

Cite This Article :

Dr. I. Lakshmi, "A Vision, Architectural Elements, and Future direction of Internet of Things (IoT)", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 3, Issue 1, pp.477-479, January-February-2018.
Journal URL : http://ijsrcseit.com/CSEIT183192

Article Preview