A Literature Review on Security Enhanced Multi-Factor Biometric Authentication System Using FFF and KSVM

Authors(2) :-P. Pandimeena, N. Nanthini

We focus on multimodal biometric system by combining finger knuckle and finger vein using feature level fusion optimization. Biometric characteristics (Eyes, Finger vein, Finger Knuckle, Face, Ear, and Palm) like. Here used unique and secure password (like Finger Vein, Finger Knuckle). In this paper, the authors propose a multimodal biometric system by combining the finger knuckle and finger vein images at feature-level fusion using fractional firefly (FFF) optimization. Biometric characteristics, like finger knuckle and finger vein are unique and secure. Initially, the features are extracted from the finger knuckle and finger vein images using repeated line tracking method. Then, a newly developed method of feature-level fusion using FFF s is used. This method is utilized to find out the optimal weight score to fuse the extracted feature sets of finger knuckle and finger vein images. Thus, the recognition is carried out by the fused feature set using layered k-SVM (k-support vector machine) which is newly developed by combining the layered SVM classifier and k-neural network classifier. The experimental results are evaluated and the performance is analyzed with false acceptance ratio, false rejection ratio and accuracy. The outcome of the proposed FFF optimization system obtains a higher accuracy.

Authors and Affiliations

P. Pandimeena
Assistant Professor, Department of Computer Science, Sakthi College Of Arts and Science for Women, Oddanchatram, India
N. Nanthini
Department of ECE, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India

Feature Level Fusion, FFF Optimization, Repeated Line Tracking method, Layered K-SVM, K-neural network classifier.

  1. Jain, A.K., Hong, L., Kulkarni, Y.: 'A multimodal biometric system using fingerprint, face and speech'. Proc. of Int. Conf. on Audio-and Video-based Biometric Person Authentication, 1999, pp. 182–187
  2. Saini, R., Rana, N.: 'Comparison of various biometric methods', Adv. Sci.Technol., 2014, 2, (1), pp. 24–30
  3. Perumal, E., Ramachandran, S.: 'A multimodal biometric system based on palmprint and finger knuckle print recognition methods', Inf. Technol., 2015, 12, (2), pp. 118–127
  4. Neware, S., Mehta, K., Zadgaonkar, A.S.: 'Finger knuckle surface biometrics', Eng. Technol. Adv. Eng., 2012, 2, (12), pp. 452–455
  5. Lu, L., Peng, J.: 'Finger multi-biometric cryptosystem using feature-level fusion', J. Signal Process., Image Process. Pattern Recogn., 2014, 7, (3), pp.223–236
  6. Kale, K.V., Rode, Y.S., Kazi, M.M., et al.: 'Multimodal biometric system using fingernail and finger knuckle'. Proc. of Int. Symp. On Computational and Business Intelligence, 2013, pp. 279–283
  7. Jacob, A.J., Bhuvan, N.T., Thampi, S.M.: 'Feature level fusion using multiple fingerprints', Comput. Sci.-New Dimens. Perspect., 2011, 4(1), pp. 13–18
  8. Kang, B.J., Park, K.R.: 'Multimodal biometric method based on vein and geometry of a single finger', IET Comput. Vis., 2010, 4, (3), pp. 209–217
  9. Michael, G.K.O., Connie, T., Teoh, A.B.J.: 'A contactless biometric system using multiple hand features', Visual Commun. Image Represent., 2012, 23,pp. 1068–1084
  10. Ross, A., Govindarajan, R.: 'Feature level fusion in biometric systems'. Proc.of Biometric Consortium Conf. (BCC), 2004
  11. Yang, W., Huang, X., Zhou, F., et al.: 'Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion',Inf. Sci., 2014, 268, pp. 20–32
  12. Park, G., Kim, S.: 'Hand biometric recognition based on fused hand geometry and vascular patterns', Sensors, 2013, 13, pp. 2895–2910.
  13. Rattani, A., Kisku, D.R., Bicego, M., et al. 'Feature level fusion of face and fingerprint biometrics'. Proc. of Int. Conf. on BTAS, 2007, pp. 1–6.
  14. Srivastava, D.K., Bhambhu, L.: 'Data classification using support vector machine', J. Theor. Appl. Inf. Technol., 2009, 12, (1), , pp. 1–7
  15. Dass, S.C., Nandakumar, K., Jain, A.K.: 'A principled approach to score level fusion in multimodal biometric systems'. Proc. of Audio-and Video-Based Biometric Person Authentication, 2005, pp. 1049–1058
  16. Feifei, C.U.I., Gong ping, Y.A.N.G.: 'Score level fusion of fingerprint and finger vein recognition', Comput. Inf. Syst., 2011, 7, (16), pp. 5723–5731
  17. Jain, A.K., Ross, A., Prabhakar, S.: 'An introduction to biometric recognition', Circuits Syst. Video Technol., 2004, 14, (1), pp. 4–20
  18. Yang, J., Zhang, X.: 'Feature-level fusion of fingerprint and finger-vein for personal identification', Pattern Recogn. Lett., 2012, 33, pp. 623–628
  19. Park, Y.H., Tien, D.N., Lee, E.C., et al.: 'A multimodal biometric recognition of touched fingerprint and finger-vein'. Proc. of Int. Conf. on Multimedia and Signal Processing, 2011, vol. 1, pp. 247–250
  20. Miura, N., Nagasaka, A., Miyatake, T.: 'Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification', Mach. Vis. Appl., 2004, 15, pp. 194–203
  21. Kumar, A., Ravikanth, C.: 'Personal authentication using finger knuckle surface', IEEE Trans. Inf. Forensics Sec., 2009, 4, (1), pp. 98–110
  22. Kumar, A., Zhou, Y.: 'Human identification using finger images', IEEE Trans. Image Process., 2012, 21, (4), pp. 2228–2244
  23. Miura, N., Nagasaka, A., Miyatake, T.: 'Extraction of finger vein patterns using maximum curvature points in image profiles', IEICE Trans. Inf. Syst.,2007, 8, pp. 1185–1194
  24. Yang, W., Yu, X., Liao, Q.: 'Personal authentication using finger vein pattern and finger-dorsa texture fusion'. Proc. of the 17th ACM Int. Conf. on Multimedia, 2009, pp. 905–908
  25. Prabhakar, S., Pankanti, S., Jain, A.K.: 'Biometric recognition: security and privacy concerns', IEEE Secur. Priv., 2003, 1, (2), pp. 33–42
  26. Deepak, A., Shirsat, S.: 'Multimodal biometric recognition system'. Proc. Of Int. Conf. on recent Innovations in Engineering and Management, 2016, pp.237–244
  27. Yang, X.-S.: 'Firefly algorithm, stochastic test functions and design optimisation', Int. J. Bio-Inspired Comput., 2010, 2, (2), pp. 78–84

Publication Details

Published in : Volume 3 | Issue 3 | March-April 2018
Date of Publication : 2018-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 417-425
Manuscript Number : CSEIT1833231
Publisher : Technoscience Academy

ISSN : 2456-3307

Cite This Article :

P. Pandimeena, N. Nanthini, "A Literature Review on Security Enhanced Multi-Factor Biometric Authentication System Using FFF and KSVM", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 3, Issue 3, pp.417-425, March-April-2018.
Journal URL : http://ijsrcseit.com/CSEIT1833231

Article Preview

Follow Us

Contact Us