
CSEIT1172492 | Received : 15 August 2017 | Accepted : 31 August 2017 | July-August-2017  [(2)4: 875-879] 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 4 | ISSN : 2456-3307 

 

875 

Algorithm for 2-Vertex Connectivity in Directed Graphs  
T Manohar Reddy 

P.G. Student, Department of Computer Engineering, JNTU College of Engineering, Anantapur, Andhra Pradesh, India
 
 

 

ABSTRACT 
 

Graph theory is very important in solving many problems efficiently. Each graph is made up of vertices and edges. Common 

notation used to represent a graph is G = (V, E) where V is a set of vertices and E is a set of edges. The dynamics of graphs 

were understood and explored well in the literature while there is insufficient research related to directed graphs. There are 

many problems to be solved with respect to graphs. For instance, 2-vertex connectivity is an important problem to be addressed. 

Recently Georgiadis et al. focused on this problem and found that two vertices v and w are 2-vertex connected when there are 

two internally vertex -disjoint paths coming from v to w and two internally vertex disjoint paths from w to v. Many kinds of 

combinations were explored in their work. However, it is useful to have more investigation on this. In this paper we reviewed 

directed graphs with 2-vertex connectivity with some algorithms. Our study reviewed that the approaches can be used 

effectively to solve select problems in the real world. 
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I. INTRODUCTION 

 
There are many applications that are based on graphs. 

For instance network related things are generally 

solved in the form of graphs. Of late there is cloud 

computing technology where thousands of physical 

machines and more than that of virtual machines are 

running. The mapping of virtual machines to physical 

machines effectively can be done by employing graph 

theory. Thus graph theory plays vital role in the real 

world. Another example is model transformations in 

software engineering. A model can be represented as a 

graph and it can be subjected to transformation that can 

again be represented in the form of another 

graph.Accordingly graph theory is commonly used in 

exceptional purposes.Customary notation used to 

symbolize a graph is G = (V, E) where V is a set of 

vertices and E is a set of edges. The dynamics of 

graphs were understood and explored well in the 

literature while there is insufficient research related to 

directed graphs. There are many problems to be solved 

with respect to graphs. Graphs are of two type known 

as directed graphs and undirected graphs. The directed 

graphs are shown in Figure 1 while the undirected 

graph is shown in Figure 2.  

 
Figure 1: Illustrates directed graph 

 
Figure 2: Illustrates undirected graph 

As shown in Figure 1, the directed graph contains 

directions from one vertex to another using some arrow 

head which is missing in undirected graph shown in 

Figure 2. In this paper, the focus is on the directed 
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graphs. Especially it throws light into 2-Vertex 

connectivity in directed graphs. Our contributions in 

this paper include the algorithm that can be used to 

have 2-vertex connectivity graphs and the descriptions 

that can help in understanding the utility of such graphs 

in the real world. The structure of the paper is as 

follows. Section 2 threw light into literature review 

related to graph theory. Section 3 presents proposed 

algorithms related to directed graphs with 2-vertex 

connectivity. Section 4 presents the directed graphs 

with variants. Section 5 concludes the paper. 

 

2-connectivity 

             

Given an undirected graph G = (V, E), an edge is a 

bridge if its removal increases the number of connected 

components of G. Graph G is 2-edge-connected if it 

has no bridges. The 2 edge-connected components of G 

are its maximal 2-edge-connected subgraphs. Two 

vertices v and w are 2-edge-connected if there are two 

edge-disjoint paths between v and w:  we denote this 

relation by v ↔e w. Equivalently, by Menger's 

Theorem [28], v and w are 2-edge-connected if the 

removal of any edge leaves them in the same connected 

component. Analogous definitions can be given for 2-

vertex connectivity. In unique, a vertex is an 

articulation point if its removal increases the quantity 

of connected components of G. A graph G is 2-vertex-

connected if it has minimum three vertices and no 

articulation points. The 2-vertex-connected components 

of G are its maximal 2-vertex-connected 

subgraphs.Note that the condition on the minimum 

number of vertices in a 2-vertex-connected graph 

disallows degenerate 2-vertex-connected components 

consisting of one single edge. Two vertices v and w are 

2-vertex-connected if there are two internally vertex-

disjoint paths between v and w. we denote this relation 

by v ↔2v w. If v and w are 2-vertex-connected then 

Menger's Theorem implies that the removal of any 

vertex different from v and w leaves them in the same 

connected component. The converse does not 

necessarily hold, since v and w may be adjacent but not 

2-vertex-connected. It is easy to show that v ↔2e w 

(resp., v ↔2v w) if and only if v and w are in a same 2-

edge-connected (resp., 2-vertex- connected) component. 

All bridges, articulation points, 2-edge- and 2-vertex-

connected components of undirected graphs can be 

computed in linear time essentially by the same 

Algorithm[16]. 

 

II. RELATED WORK 
 

This section provides review of literature related to 

directed graphs and related aspects including 2-Vertex 

connectivity. Paudel et al. [1] used directed graphs for 

solving problems related to node detection. They 

proposed a linear time algorithm in order to have a 

heuristic approach in making use of directed graphs. 

Such graphs are subjected to the case of node detection 

problem which is considered to be NP-hard. Ghaffari 

and Su [2] studied distributed graph problems. They 

focused on degree splitting or in order words 

portioning the edges. They used undirected degree 

splitting for edge-colouring and other applications in 

the real world. Merker [3] on the other hand focused on 

decomposing highly edge-connected graphs in order to 

convert them into fixed tree. They named the method as 

Tree Decomposition Conjecture (TDC). In the process 

of decomposition, sub graphs are generated and with 

certain constraints. Esperet et al. [4] studied yet 

different aspects of graphs. They investigated on flows 

and additive bases in graphs. With that they generated 

many highly edge-connected graphs. 

  

Florini et al. [5] proposed an approximation algorithm 

for tree augmentation. Towards this end, they used 

Chvatal Gmory cuts. It was the problem related to 

network design. Fundamentally the tree augmentation 

is used in networking studies. Henginzer et al. [6] 

focused on conditional hardness with respect to 

sensitivity problems. Conditional lower bounds are 

used for setting sensitivity and solve many real world 

problems. They used a conjecture known as Boolean 

Matrix Multiplication (BMM) which is one of the 

combinatorial algorithms used for solving problems. 

He et al. [7] explored on matching covered graphs for 

the purpose of problems related to perfect matching. 

They used them as matching-covered graphs where 

edges are removable. Characterization of such graphs 

hasutility in the real world applications.  

 

Gutin et al. [8] focused on several problems that can be 

solved using graphs. They investigated on connectivity 

preservation, edge deletions and path-contractions. 

They used biconnectivity deletion, strong connectivity, 

path-contraction with connectivity preservation 

constraints with appropriate parameter settings. 

Baswana et al. [10] studied depth first search (DFS) 

algorithms for solving problems that are pertaining to 

graphs. They focused on incremental DFS based on the 

http://www.ijsrcseit.com/
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observations made from existing algorithms. They 

studied the dynamics of insertion, deletion and update 

of graphs dynamically and randomly to evaluate 

performance of their method. Georgiadis et al. [9] 

investigated on decremental data structures that have 

special utility in graph problems. They focussed on the 

decremental data structures that support sensitivity 

queries. They used directed graphs with connectivity 

and dominators. Maintaining a dominor tree is an 

important application of such data structures.  

 

Horvath et al. [11] focused on finite graphs and 

maximal sub graphs in order to investigate problems in 

the real world. Flow semi group introduced by John 

Rhodes played vital role in graph applications. The 

rationale behind this is that it was able to provide many 

variants of graphs to deal with different problems. 

Zhang et al. [12] studied problems related to graphs. 

Especially they threw light into flip-distance between 

alpha-orientations of graphs. They formulated 

necessary conditions needed to achieve this. 

Archdeacon et al. [13] proposed digraphs with 2-

regular planar. More details needed to understand them 

include embedding process and directed means of 

doing it. Such graphs are widely used for solving 

problems where natural analogue in parameter setting 

is required. Holm et al. [14] proposed a data structure 

to have planar graphs with edge contractions. They 

proposed algorithms in order to improve running times 

and used computations such as MST. Georgiadis et al. 

[15] proposed mechanisms to understand and use 

digraphs with 2-vertex connectivity. In this paper we 

explore same algorithm in detailed manner related to 

digraphs that reflect 2-vertex connectivity. 

 

III. ALGORITHM FOR DIRECTED GRAPHS 
 

We discussed algorithm to have diversified 2-vertex 

connectivity graphs and exploring them in a better way. 

There are many terms related to graphs. They are 

strongly connected digraph, 2-vertex connected 

components, 2-vertex connected blocks, 2-edge 

connected components, and 2-edge connected blocks. 

More details on this can be found in [17].  

 

 

 

Algorithm 1: Linear-time computation of the 

vertex-resilient blocks 

of a strongly connected digraph G = (V, E) 

Step 1: Choose an arbitrary vertex s ∈V as a start 

vertex. Compute the dominator tree D(s). 

 For any vertex v, let Ĉ(v) be the set containing v and 

the childrenof v in D(s). 

 Initialize the block forest F by associating blockĈ(v) 

with everyvertex w ∈Ĉ(v), 

for all vertices v that are not a leaves in D(s). 

Step 2: Compute the auxiliary graphs Gr for all vertices 

r that are not leaves in D(s). 

Step 3: Process the vertices of D(s) in bottom-up order. 

For each auxiliary graphH = Gr with 

 r not a leaf in D(s) do: 

Step 3.1: Compute the dominator tree T = D
R

H(r). 

Step 3.2: (x, S, T) ≔ s-t max-flow(G, s, t). 

 Step 3.3:(x′, T′, S′) ≔ s-t max-flow(G, t, s). 

 If x′ < x 

  Step3.4:x ≔ x′, S ≔ S′, T ≔ T′ 

 Step3.5:Add edge (s, t) with weight x to A 

 Step3.6:Construction(G, s, N ∩ S) 

 Construction(G, t, N ∩ T) 

 

 

Algorithm 1 for computing 2-vertex connectivity  

 
Figure 3: An input graph 

As shown in Figure 3, it is evident that he input graph 

is a directed graph. It shows various edges and vertices. 

By giving this graph as input, the algorithm 1, tries to 

have recursive approach to generated 2-vertex 

connectivity graphs with different variants.  

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=


Volume 2 | Issue 4 | July-August -2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 878 

 
Figure 4:the dominator tree D(s) of flow graph G(s) 

The result of two recursive calls generated this kind of 

graph. It has many vertices and edges with the features 

pertaining to 2-vertex connectivity.  

 
Figure 5: Result of first two recursive class when input 

is given from digraph. The auxiliary graph H = Gr and 

the dominator tree D
R

H(r) of the flow graph H
R
(r). 

As shown in Figure 5, it is evident that the recursive 

calls generated another directed graph that shows 2-

vertex connectivity. 

 
Figure 6: The reverse auxiliary graph H

R
 = G

R
iof the 

flow graph G(s). Result of the Algorithm 1 evident that 

the recursive call at Step 3. 

 

 
 

Figure 7 : F and F’ are, respectively, the block forest 

before andafter the execution of split(B, T). Only the 

affected portion of the block forest is shown. 

 

Lemma 1.Algorithm 1 runs in O(m) time. 

Proof. We account for the total time spent on each step 

that Algorithm 1 executes.Step 1 takes O(m) time by 

[3], and Step 2 takes O(m) time.We have that the total 

number of vertices and the total number of edges in all 

auxiliarygraphs H of G are O(n) and O(m) respectively. 

The totalsize (number of vertices and edges) of all 

auxiliary graphs H
R

qfor all H, computed inStep 3.4, is 

still O(m) and they are also computed in O(m) total 

time. Now consider the split operations. All these 

operations that occur during Step 3.3 for a specific 

auxiliary graph Gr operate on the same tree T, which 

can be preprocessed once,for all split operations. 

Therefore, the total preprocessing time for all split 

operations is O(n). Excluding the preprocessing time 

for T, a split(B, T) operationtakes time proportional to 

the number of vertices in B. Therefore all split 

operations takeO(n) time in total. In Step 3.5.1 we 

examine the adjacency listsof the ordinary vertices v 

∈H
R

qand find the corresponding blocks that contain at 

leastsuch two ordinary vertices. Then we examine the 

adjacency lists of each such block. So,the adjacency 

lists of each vertex v and each block that contains v can 

be examined atmost three times. Hence, Step 3.5.1 

takes O(n) time in total. Finally, Steps 3.5.2 and3.5.3 

take O(m) time in total by [16]. 

Theorem. Let G be a digraph with n vertices and m 

edges. We can compute the2-vertex-connected blocks 

of G in O(m + n) time and store them in a data structure 

ofO(n) space. Given this data structure, we can test in 

http://www.ijsrcseit.com/
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O(1) time if any two vertices are2-vertex-connected. 

Moreover, if the two vertices are not 2-vertex-

connected, then we canreport in O(1) time a strong 

articulation point or a strong bridge that separates them. 

 

IV.CONCLUSIONS AND FUTURE WORK 
 

In this paper we studied graph theory that is widely 

used to solve many real world problems. When the 

complexity of any problem is more, it can be 

understood and solved easily using graph theory. This 

theory supports both directed and undirected graphs. 

Common notation used to represent a graph is G = (V, 

E) where V is a set of vertices and E is a set of edges. 

The dynamics of graphs were understood and explored 

well in the literature while there is insufficient research 

related to directed graphs. There are many problems to 

be solved with respect to graphs. For instance, 2-vertex 

connectivity is an important problem to be addressed. 

Recently Georgiadis et al. focused on this problem and 

found that two vertices v and w are 2-vertex connected 

when there are two vertex-disjoint paths coming from v 

to w and two vertex- disjoint paths from w to v. In this 

paper we explored 2-vertex connectivity with 

algorithmthat can support different variations in 

directed graphs. We presented the resultant graphs in 

the paper. In future we focus on more algorithms to 

have diversified graphs that support 2-vertex 

connectivity with respect to directed graphs.  
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