
CSEIT1172492 | Received : 15 August 2017 | Accepted : 31 August 2017 | July-August-2017 [(2)4: 875-879]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 4 | ISSN : 2456-3307

875

Algorithm for 2-Vertex Connectivity in Directed Graphs
T Manohar Reddy

P.G. Student, Department of Computer Engineering, JNTU College of Engineering, Anantapur, Andhra Pradesh, India

ABSTRACT

Graph theory is very important in solving many problems efficiently. Each graph is made up of vertices and edges. Common

notation used to represent a graph is G = (V, E) where V is a set of vertices and E is a set of edges. The dynamics of graphs

were understood and explored well in the literature while there is insufficient research related to directed graphs. There are

many problems to be solved with respect to graphs. For instance, 2-vertex connectivity is an important problem to be addressed.

Recently Georgiadis et al. focused on this problem and found that two vertices v and w are 2-vertex connected when there are

two internally vertex -disjoint paths coming from v to w and two internally vertex disjoint paths from w to v. Many kinds of

combinations were explored in their work. However, it is useful to have more investigation on this. In this paper we reviewed

directed graphs with 2-vertex connectivity with some algorithms. Our study reviewed that the approaches can be used

effectively to solve select problems in the real world.

Keywords : Graph Theory, Directed Graphs, 2-Edge Connectivity

I. INTRODUCTION

There are many applications that are based on graphs.

For instance network related things are generally

solved in the form of graphs. Of late there is cloud

computing technology where thousands of physical

machines and more than that of virtual machines are

running. The mapping of virtual machines to physical

machines effectively can be done by employing graph

theory. Thus graph theory plays vital role in the real

world. Another example is model transformations in

software engineering. A model can be represented as a

graph and it can be subjected to transformation that can

again be represented in the form of another

graph.Accordingly graph theory is commonly used in

exceptional purposes.Customary notation used to

symbolize a graph is G = (V, E) where V is a set of

vertices and E is a set of edges. The dynamics of

graphs were understood and explored well in the

literature while there is insufficient research related to

directed graphs. There are many problems to be solved

with respect to graphs. Graphs are of two type known

as directed graphs and undirected graphs. The directed

graphs are shown in Figure 1 while the undirected

graph is shown in Figure 2.

Figure 1: Illustrates directed graph

Figure 2: Illustrates undirected graph

As shown in Figure 1, the directed graph contains

directions from one vertex to another using some arrow

head which is missing in undirected graph shown in

Figure 2. In this paper, the focus is on the directed

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 876

graphs. Especially it throws light into 2-Vertex

connectivity in directed graphs. Our contributions in

this paper include the algorithm that can be used to

have 2-vertex connectivity graphs and the descriptions

that can help in understanding the utility of such graphs

in the real world. The structure of the paper is as

follows. Section 2 threw light into literature review

related to graph theory. Section 3 presents proposed

algorithms related to directed graphs with 2-vertex

connectivity. Section 4 presents the directed graphs

with variants. Section 5 concludes the paper.

2-connectivity

Given an undirected graph G = (V, E), an edge is a

bridge if its removal increases the number of connected

components of G. Graph G is 2-edge-connected if it

has no bridges. The 2 edge-connected components of G

are its maximal 2-edge-connected subgraphs. Two

vertices v and w are 2-edge-connected if there are two

edge-disjoint paths between v and w: we denote this

relation by v ↔e w. Equivalently, by Menger's

Theorem [28], v and w are 2-edge-connected if the

removal of any edge leaves them in the same connected

component. Analogous definitions can be given for 2-

vertex connectivity. In unique, a vertex is an

articulation point if its removal increases the quantity

of connected components of G. A graph G is 2-vertex-

connected if it has minimum three vertices and no

articulation points. The 2-vertex-connected components

of G are its maximal 2-vertex-connected

subgraphs.Note that the condition on the minimum

number of vertices in a 2-vertex-connected graph

disallows degenerate 2-vertex-connected components

consisting of one single edge. Two vertices v and w are

2-vertex-connected if there are two internally vertex-

disjoint paths between v and w. we denote this relation

by v ↔2v w. If v and w are 2-vertex-connected then

Menger's Theorem implies that the removal of any

vertex different from v and w leaves them in the same

connected component. The converse does not

necessarily hold, since v and w may be adjacent but not

2-vertex-connected. It is easy to show that v ↔2e w

(resp., v ↔2v w) if and only if v and w are in a same 2-

edge-connected (resp., 2-vertex- connected) component.

All bridges, articulation points, 2-edge- and 2-vertex-

connected components of undirected graphs can be

computed in linear time essentially by the same

Algorithm[16].

II. RELATED WORK

This section provides review of literature related to

directed graphs and related aspects including 2-Vertex

connectivity. Paudel et al. [1] used directed graphs for

solving problems related to node detection. They

proposed a linear time algorithm in order to have a

heuristic approach in making use of directed graphs.

Such graphs are subjected to the case of node detection

problem which is considered to be NP-hard. Ghaffari

and Su [2] studied distributed graph problems. They

focused on degree splitting or in order words

portioning the edges. They used undirected degree

splitting for edge-colouring and other applications in

the real world. Merker [3] on the other hand focused on

decomposing highly edge-connected graphs in order to

convert them into fixed tree. They named the method as

Tree Decomposition Conjecture (TDC). In the process

of decomposition, sub graphs are generated and with

certain constraints. Esperet et al. [4] studied yet

different aspects of graphs. They investigated on flows

and additive bases in graphs. With that they generated

many highly edge-connected graphs.

Florini et al. [5] proposed an approximation algorithm

for tree augmentation. Towards this end, they used

Chvatal Gmory cuts. It was the problem related to

network design. Fundamentally the tree augmentation

is used in networking studies. Henginzer et al. [6]

focused on conditional hardness with respect to

sensitivity problems. Conditional lower bounds are

used for setting sensitivity and solve many real world

problems. They used a conjecture known as Boolean

Matrix Multiplication (BMM) which is one of the

combinatorial algorithms used for solving problems.

He et al. [7] explored on matching covered graphs for

the purpose of problems related to perfect matching.

They used them as matching-covered graphs where

edges are removable. Characterization of such graphs

hasutility in the real world applications.

Gutin et al. [8] focused on several problems that can be

solved using graphs. They investigated on connectivity

preservation, edge deletions and path-contractions.

They used biconnectivity deletion, strong connectivity,

path-contraction with connectivity preservation

constraints with appropriate parameter settings.

Baswana et al. [10] studied depth first search (DFS)

algorithms for solving problems that are pertaining to

graphs. They focused on incremental DFS based on the

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 877

observations made from existing algorithms. They

studied the dynamics of insertion, deletion and update

of graphs dynamically and randomly to evaluate

performance of their method. Georgiadis et al. [9]

investigated on decremental data structures that have

special utility in graph problems. They focussed on the

decremental data structures that support sensitivity

queries. They used directed graphs with connectivity

and dominators. Maintaining a dominor tree is an

important application of such data structures.

Horvath et al. [11] focused on finite graphs and

maximal sub graphs in order to investigate problems in

the real world. Flow semi group introduced by John

Rhodes played vital role in graph applications. The

rationale behind this is that it was able to provide many

variants of graphs to deal with different problems.

Zhang et al. [12] studied problems related to graphs.

Especially they threw light into flip-distance between

alpha-orientations of graphs. They formulated

necessary conditions needed to achieve this.

Archdeacon et al. [13] proposed digraphs with 2-

regular planar. More details needed to understand them

include embedding process and directed means of

doing it. Such graphs are widely used for solving

problems where natural analogue in parameter setting

is required. Holm et al. [14] proposed a data structure

to have planar graphs with edge contractions. They

proposed algorithms in order to improve running times

and used computations such as MST. Georgiadis et al.

[15] proposed mechanisms to understand and use

digraphs with 2-vertex connectivity. In this paper we

explore same algorithm in detailed manner related to

digraphs that reflect 2-vertex connectivity.

III. ALGORITHM FOR DIRECTED GRAPHS

We discussed algorithm to have diversified 2-vertex

connectivity graphs and exploring them in a better way.

There are many terms related to graphs. They are

strongly connected digraph, 2-vertex connected

components, 2-vertex connected blocks, 2-edge

connected components, and 2-edge connected blocks.

More details on this can be found in [17].

Algorithm 1: Linear-time computation of the

vertex-resilient blocks

of a strongly connected digraph G = (V, E)

Step 1: Choose an arbitrary vertex s ∈V as a start

vertex. Compute the dominator tree D(s).

 For any vertex v, let Ĉ(v) be the set containing v and

the childrenof v in D(s).

 Initialize the block forest F by associating blockĈ(v)

with everyvertex w ∈Ĉ(v),

for all vertices v that are not a leaves in D(s).

Step 2: Compute the auxiliary graphs Gr for all vertices

r that are not leaves in D(s).

Step 3: Process the vertices of D(s) in bottom-up order.

For each auxiliary graphH = Gr with

 r not a leaf in D(s) do:

Step 3.1: Compute the dominator tree T = D
R

H(r).

Step 3.2: (x, S, T) ≔ s-t max-flow(G, s, t).

 Step 3.3:(x′, T′, S′) ≔ s-t max-flow(G, t, s).

 If x′ < x

 Step3.4:x ≔ x′, S ≔ S′, T ≔ T′

 Step3.5:Add edge (s, t) with weight x to A

 Step3.6:Construction(G, s, N ∩ S)

 Construction(G, t, N ∩ T)

Algorithm 1 for computing 2-vertex connectivity

Figure 3: An input graph

As shown in Figure 3, it is evident that he input graph

is a directed graph. It shows various edges and vertices.

By giving this graph as input, the algorithm 1, tries to

have recursive approach to generated 2-vertex

connectivity graphs with different variants.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 878

Figure 4:the dominator tree D(s) of flow graph G(s)

The result of two recursive calls generated this kind of

graph. It has many vertices and edges with the features

pertaining to 2-vertex connectivity.

Figure 5: Result of first two recursive class when input

is given from digraph. The auxiliary graph H = Gr and

the dominator tree D
R

H(r) of the flow graph H
R
(r).

As shown in Figure 5, it is evident that the recursive

calls generated another directed graph that shows 2-

vertex connectivity.

Figure 6: The reverse auxiliary graph H

R
 = G

R
iof the

flow graph G(s). Result of the Algorithm 1 evident that

the recursive call at Step 3.

Figure 7 : F and F’ are, respectively, the block forest

before andafter the execution of split(B, T). Only the

affected portion of the block forest is shown.

Lemma 1.Algorithm 1 runs in O(m) time.

Proof. We account for the total time spent on each step

that Algorithm 1 executes.Step 1 takes O(m) time by

[3], and Step 2 takes O(m) time.We have that the total

number of vertices and the total number of edges in all

auxiliarygraphs H of G are O(n) and O(m) respectively.

The totalsize (number of vertices and edges) of all

auxiliary graphs H
R

qfor all H, computed inStep 3.4, is

still O(m) and they are also computed in O(m) total

time. Now consider the split operations. All these

operations that occur during Step 3.3 for a specific

auxiliary graph Gr operate on the same tree T, which

can be preprocessed once,for all split operations.

Therefore, the total preprocessing time for all split

operations is O(n). Excluding the preprocessing time

for T, a split(B, T) operationtakes time proportional to

the number of vertices in B. Therefore all split

operations takeO(n) time in total. In Step 3.5.1 we

examine the adjacency listsof the ordinary vertices v

∈H
R

qand find the corresponding blocks that contain at

leastsuch two ordinary vertices. Then we examine the

adjacency lists of each such block. So,the adjacency

lists of each vertex v and each block that contains v can

be examined atmost three times. Hence, Step 3.5.1

takes O(n) time in total. Finally, Steps 3.5.2 and3.5.3

take O(m) time in total by [16].

Theorem. Let G be a digraph with n vertices and m

edges. We can compute the2-vertex-connected blocks

of G in O(m + n) time and store them in a data structure

ofO(n) space. Given this data structure, we can test in

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 879

O(1) time if any two vertices are2-vertex-connected.

Moreover, if the two vertices are not 2-vertex-

connected, then we canreport in O(1) time a strong

articulation point or a strong bridge that separates them.

IV.CONCLUSIONS AND FUTURE WORK

In this paper we studied graph theory that is widely

used to solve many real world problems. When the

complexity of any problem is more, it can be

understood and solved easily using graph theory. This

theory supports both directed and undirected graphs.

Common notation used to represent a graph is G = (V,

E) where V is a set of vertices and E is a set of edges.

The dynamics of graphs were understood and explored

well in the literature while there is insufficient research

related to directed graphs. There are many problems to

be solved with respect to graphs. For instance, 2-vertex

connectivity is an important problem to be addressed.

Recently Georgiadis et al. focused on this problem and

found that two vertices v and w are 2-vertex connected

when there are two vertex-disjoint paths coming from v

to w and two vertex- disjoint paths from w to v. In this

paper we explored 2-vertex connectivity with

algorithmthat can support different variations in

directed graphs. We presented the resultant graphs in

the paper. In future we focus on more algorithms to

have diversified graphs that support 2-vertex

connectivity with respect to directed graphs.

V. REFERENCES

[1]. NilakanthaPaudel, LoukasGeorgiadis and

Giuseppe F. Italiano. (2017). Computing

Critical Nodes in Directed Graphs. SIAM.

P43-57.

[2]. Mohsen Ghaffari and Hsin-HaoSu .Distributed

Degree Splitting, Edge Coloring, and

Orientations.p2505-2523.

[3]. Martin Merker. (2017). Decomposing highly

edge-connected graphs into homomorphic

copies of a fixed tree. ELSEVIER.122 , P91–

108.

[4]. louisesperet, remi de joannis de verclos, tien-

nam le, ' and stephanthomass ' e. (2017).

additive bases and flows in graphs, p1-11.

[5]. Samuel Fiorini Martin GroßJochenKonemann

and Laura Sanita .(2017). A 3 2 -

Approximation Algorithm for Tree

Augmentation via Chvatal-Gomory Cuts, p1-

21.

[6]. Monika Henzinger , Andrea Lincoln , Stefan

Neumann , and Virginia Vassilevska Williams .

(2017). Conditional Hardness for Sensitivity

Problems, p1-33.

[7]. JinghuaHe ,Erling Wei , Dong Ye and

ShaohuiZhai. (2017). On Perfect Matchings in

Matching Covered Graphs, p1-10.

[8]. Gregory Gutin , M. S. Ramanujan , Felix Reidl

and Magnus Wahlstrom. (2017). Path-

contractions, edge deletions and connectivity

preservation, p1-10.

[9]. LoukasGeorgiadis,ThomasDueholmHansen,Gi

useppe F. Italiano,SebastianKrinninger and

Nikos Parotsidis. (2017). Decremental Data

Structures for Connectivity and Dominators in

Directed Graphs, p1-39.

[10]. SurenderBaswanaAyushGoel and Shahbaz

Khan. (2017). Incremental DFS algorithms: a

theoretical and experimental study, p1-31.

[11]. Gaborhorvath, chrystopher l. nehaniv, and

karolypodoski. (2017). the maximal subgroups

and the complexity of the flow semigroup of

finite (di)graphs, p1-23.

[12]. WeijuanZhang ,JianguoQian and Fuji Zhang.

(2017). Flip-distance between α-orientations of

graphs embedded on plane and sphere, p1-15

[13]. Dan Archdeacon,MattDeVos,StefanHannie and

BojanMohar. (2017). Whitney's Theorem for 2-

Regular Planar Digraphs, p1-8.

[14]. Jacob Holm, Giuseppe F. Italiano , Adam

Karczmarz , JakubŁącki, Eva Rotenberg , and

PiotrSankowski. (2017). Contracting a Planar

Graph Efficiently, p1-21.

[15]. LoukasGeorgiadis, Giuseppe F. Italiano, Luigi

Laura,NikosParotsidis. (2017). 2-Edge

Connectivity in Directed Graphs. SIAM,

p1988-2005.

[16]. R. E. Tarjan. Depth-_rst search and linear

graph algorithms. SIAM Journal on

Computing, 1(2):146_160, 1972.

[17]. L. Georgiadis, G. F. Italiano, L. Laura, and N.

Parotsidis.2-vertex connectivity in directed

graphs.In Proceedings of the 42th International

Colloquium on automata, Languages, and

Programming, 2015.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

