
CSEIT11833404 | Received : 15 March 2018 | Accepted : 25 March 2018 | March-April-2018 [(3) 4 : 403-408]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 4 | ISSN : 2456-3307

403

A Deduplication Aware similarity in Cloud with Secure

Deduplication of Encrypted Data
S. Palani1, P. Bharath Kumar Reddy 2, K. Roja2

 1Asst. Professor Department of Computer Applications Sri Venkateswara College of Engineering and

Technology(Autonomous) Chittoor, Andhra Pradesh, India

2PG scholar Department of Computer Applications Sri Venkateswara College of Engineering and

Technology(Autonomous) Chittoor, Andhra Pradesh, India

ABSTRACT

Data reduction has become progressively necessary in storage systems owing to the explosive growth of digital

data within the world that has ushered within the big data era. One in every of the most challenges facing

large-scale data reduction is the way to maximally observe and eliminate redundancy at terribly low overheads.

In this paper, we present a our scheme, a low-overhead Deduplication-Aware resemblance detection and

Elimination theme that effectively exploits existing duplicate-adjacency data for extremely economical

resemblance detection in data deduplication primarily based backup/archiving storage systems. the most plan

behind our scheme is to use a theme, call Duplicate-Adjacency primarily based resemblance Detection

(DupAdj), by considering any two data chunks to be similar (i.e., candidates for delta compression) if their

various adjacent data chunks are duplicate in a very deduplication system, and then further enhance the

resemblance detection efficiency by an improved super-feature approach.

Keywords: Data deduplication, delta compression, resemblance Detection.

I. INTRODUCTION

The redundancy of the information on the cloud

garage is growing. Thus exploiting the replica

information can help in saving the gap. It allows in

lowering the time too required for moving statistics

in low bandwidth network. Data discount is the

method of minimizing the quantity of information

that wishes to be stored in information garage

surroundings. Data Deduplication has turn out to be

an important and monetary manner to dispose of the

redundant information segments, accordingly

assuaging the stress incurred by using large amounts

of statistics want to store, Fingerprints are used to

symbolize and identify equal records blocks while

acting statistics deduplication.

To address this task, statistics deduplication

technique is desired. Data deduplication strategies

are broadly utilized by storage servers to do away

with the opportunities of storing multiple copies of

the information. Deduplication identifies replica data

portions going to be stored in storage systems also

removes duplication in existing saved data in storage

systems. Hence yield a big fee saving. There are

strategies available for duplication checking which

includes: 1) File level duplication check. 2) Chunk

level duplication test. In first method, best the

document with identical call are removed from the

storage whereas in second, the duplicate chunks of

identical documents are eliminated and shops best

one reproduction of them. In this paper, we

introduce our scheme, non-replica aware similarity

identification and elimination our scheme. Our

http://ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 404

scheme integrates two our schemes i.e. information

non-replica and delta compression to acquire

excessive statistics discount performance at less

expenses. A “DupAdj” technique is proposed to take

advantage of present reproduction adjacency records

behind non-replica to locate almost identical

information blocks for delta compression. Precisely,

due to locality of comparable information in support

datasets, the non-replica blocks which might be

neighboring to the duplicate ones are examined as

correct delta compression applicants for similarly

statistics discount.

A conceptual and actual learning of the conventional

terrific function method is performed, which

indicates that stepped forward similarity

identification for additionally delta compression is

viable whilst the previously mentioned present

duplicate-adjacency statistics is missing or

constrained. An research into the rehabilitation of no

replicated support facts indicates that delta

compression has the capability to refine the statistics-

repair overall execution of non-replicate most

effective networks with the aid of similarly removing

redundancy after deduplication and for that reason

enlarging the logical space of the restoration cache.

II. PROPOSED SYSTEM

Architecture Overview:

Proposed our scheme is designed to improve

resemblance detection for additional data reduction

in deduplication-based backup/archiving storage

systems. As shown in Figure 3, our scheme

architecture consists of three functional modules,

namely, the Deduplication module, the DupAdj

Detection module, and the improved Super-Feature

module. In addition, there are five key data

structures in our scheme, namely, Dedupe Hash

Table, SFeature Hash Table, Locality Cache,

Container, Segment, and Chunk, which are defined

below:

• A chunk is the atomic unit for data reduction. The

non-duplicate chunks, identified by their SHA1

fingerprints, will be prepared for resemblance

detection in our scheme.

• A container is the fixed-size storage unit that stores

sequential and NOT reduced data, such as

nonduplicate & non-similar or delta chunks, for

better storage performance by using large I/Os .

• A segment consists of the metadata of a number of

sequential chunks (e.g., 1MB size), such as the chunk

fingerprints, size, etc., which serves as the atomic

unit in preserving the backup-stream logical locality

for data reduction. Here our scheme uses a data

structure of doubly-linked list to record the chunk

adjacency information for the DupAdj detection.

Note that the SFeature in the segment may be

unnecessary if the DupAdj module has already

confirmed this chunk as being similar for delta

compression.

• Dedupe Hash Table serves to index fingerprints for

duplicate detection for the deduplication module.

• SFeature Hash Table serves to index the super

features after the DupAdj resemblance detection. It

manages the super-features of non-duplicate and

non-similar chunks.

• Locality Cache contains the recently accessed data

segments and thus preserves the backup-stream

locality in memory, to reduce accesses to the on disk

index from either duplicate detection or resemblance

detection.

Here we describe a general workflow of our scheme.

For the input data stream, our scheme will first

detect duplicate chunks by the Deduplication module.

Any of the many existing deduplication approaches

can be implemented here and the preservation of the

backup-stream logical locality in the segments is

required for further resemblance detection. For each

non-duplicate chunk, our scheme will first use its

DupAdj Detection module to quickly determine

whether it is a delta compression candidate. If it is

not a candidate, our scheme will then compute its

features and super-features, using its improved

Super-Feature Detection module to further detect

resemblance for data reduction.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 405

DupAdj: Duplicate-Adjacency based Resemblance

Detection:-

As a salient feature of our scheme, the DupAdj

approach detects resemblance by exploiting existing

duplicate adjacency information of a deduplication

system. The main idea behind this approach is to

consider chunk pairs closely adjacent to any

confirmed duplicate-chunk pair between two data

streams as resembling pairs and thus candidates for

delta compression.

According to the description of the our scheme data

structures in figure 3, our scheme records the

backup-stream logical locality of chunk sequence by

a doubly-linked list, which allows an efficient search

of the duplicate adjacent chunks for resemblance

detection by traversing to prior or next chunks on

the list, as shown in Figure 1. When the DupAdj

Detection module of our scheme processes an input

segment, it will traverse all the chunks by the

aforementioned doubly-linked list to find the already

duplicate-detected chunks. If chunk Am of the input

segment A was detected to be a duplicate of chunk

Bn of segment B, our scheme will traverse the

doubly-linked list of Bn in both directions (e.g.,

Am+1 & Bn+1 and Am−1 & Bn−1) in search of

potentially similar chunk pairs between segments A

and B, until a dissimilar chunk or an already detected

duplicate or similar chunk is found. Note that the

detected chunks here are considered dissimilar (i.e.,

NOT similar) to others if their similarity degree is

smaller than a predefined threshold, such as 0.25, a

false positive for resemblance detection. Actually, the

similarity degree of the DupAdj-detected chunks

tends to be very high, larger than 0.88,

• Memory overhead: Each chunk will be associated

with two pointers (about 8 or 16 Bytes) for building

the doubly-linked list when our scheme loads the

segment into the locality cache. But when the

segment is evicted from the cache, the doubly-linked

list will be immediately freed. Therefore, this RAM

memory overhead is arguably negligible given the

total capacity of the locality cache.

• Computation overhead: Confirming the similarity

degree of the DupAdj-detected chunks may

introduce additional but omitted computation

overhead. First, the delta encoding results for the

confirmed resembling (i.e., similar) chunks will be

directly used as the final delta chunk for storage.

Second, the actual extra computation overhead

occurs when the DupAdj-detected chunks are NOT

similar, which is a very rare event as discussed in the

previous paragraph.

In all, the DupAdj detection approach only adds a

doubly-linked list to an existing deduplication system;

our scheme avoids the computation and indexing

overheads of the conventional super-feature

approach. in case where the duplicate-adjacency

information is lacking, limited, or interrupted due to

operations such as file content insertions/deletions or

new file appending, our scheme will use an improved

super-feature approach to further detect and

eliminate resemblance.

Improved Super-Feature Approach:-

Traditional super-feature approaches generate

features by Rabin fingerprints and group these

features into super-features to detect resemblance for

data reduction. For example, Featurei of a chunk

(length = N), is uniquely generated with a randomly

pre-defined value pair mi & ai and N Rabin

fingerprints (as used in Content-Defined Chunking)

as follows

A super-feature of this chunk, SFeaturex, can then be

calculated by several such features as follows:

for example, to generate two super-features with k=4

features each, we must first generate 8 features,

namely, features 0...3 for SF eature1 and features 4...7

for SF eature2. For similar chunks that differ only in

a tiny fraction of bytes, most of their features will be

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 406

identical due to the random distribution of the

chunk’s maximal-feature positions. Thus two data

chunks can be considered very similar if any one of

their super features matches. The state-of-the-art

studies on delta compression and resemblance

detection recommend the use of 4 or more features

to generate a super-feature to minimize false

positives of resemblance detection.

Delta Compression:-

to reduce data redundancy among similar chunks,

xdelta, an optimized delta compression algorithm, is

adopted in our scheme after a delta compression

candidate is detected by our scheme’s resemblance

detection. Our scheme also only carries out the one-

level delta compression for similar data as employed

in derd and sidc. This is because we aim to minimize

the data fragmentation problem that would cause a

single read request to issue multiple read operations

to multiple data chunks, a likely scenario if multi-

level delta compression is employed. In other words,

in our scheme, delta compression will not be applied

to a chunk that has already been delta compressed to

avoid recursive backward referencing. And our

scheme records the similarity degree as the ratio of

compressed size to original size after delta

compression (note that “compressed size” here refers

to the size of redundant data reduced by delta

compression). For example, if delta compression

removes 4/5 of data volume in the input chunks

detected by our scheme, then the similarity degree of

the input chunks is 80%, meaning that the volume of

the input chunks can be reduced to 1/5 of its original

volume by the resemblance detection and delta

compression techniques.

Figuer 1. The data reduction workflow

Putting It All Together:-

For an incoming backup stream, our scheme goes

through the following four key steps:

1) Duplicate Detection. The data stream is first

chunked, fingerprinted, duplicate-detected, and then

grouped into segments of sequential chunks to

preserve the backup-stream logical locality. Note that

the locality information will be exploited by the

following DupAdj resemblance detection.

2) Resemblance Detection. The DupAdj resemblance

detection module in our scheme first detects

duplicate adjacent chunks in the segments formed in

step (1). After that, our scheme’s improved super-

feature module further detects similar chunks in the

remaining non-duplicate and non-similar chunks

that may have been missed by the DupAdj detection

module when the duplicate-adjacency information is

lacking or weak.

3) Delta Compression. For each of the resembling

chunks detected in step (2), our scheme reads its base

chunk, then delta encodes their differences. In order

to reduce disk reads, an LRU and locality preserved

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 407

cache is implemented here to prefetch the base-

chunks in the form of data segments.

 4) Storage Management. The data NOT reduced, i.e.,

non-similar and delta chunks, will be stored as

containers on the disk. The file mapping

relationships among the duplicate chunks,

resembling chunks, and non-similar chunks will also

be recorded as the file recipe to facilitate future data

restore operations in our scheme.

For the restore operation, our scheme will first read

the referenced file recipes and then read the

duplicate and non-similar chunks one by one from

the referenced segments on disk according to

mapping relationships in the file recipes. for the

resembling chunks, our scheme needs to read both

delta data and base-chunks and then delta decode

them to the original ones.

III. CONCLUSION

In this paper, we present our scheme, a

deduplication-aware, low-overhead similitude

detection and elimination our scheme for data

reduction in backup/archiving storage systems. our

scheme uses a unique approach, DupAdj, which

exploits the duplicate-adjacency information for

economical resemblance detection in existing

deduplication systems, and employs an improved

super-feature approach to additional detecting

resemblance once the duplicate adjacency

information is lacking or restricted. Results from

experiments driven by real-world and synthetic

backup datasets counsel that our scheme will be a

powerful and economical tool for increasing data

reduction by additional detecting resembling data

with low overheads.

IV. REFERENCES

[1]. A. Adya, W. J. Bolosky, M. Castro, R. Chaiken,

G. Cermak, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. Wattenhofer.

FARSITE: Federated, available, and reliable

storage for an incompletely trusted

environment. In Proceedings of the 5th

Symposium on Operating Systems Design and

Implementation (OSDI), Boston, MA, Dec.

2002. USENIX.

[2]. N. Agrawal, W. J. Bolosky, J. R. Douceur, and J.

R. Lorch. A five-year study of file-system

metadata. In Proceedings of the 5th USENIX

Conference on File and Storage Technologies

(FAST), pages 31-45, Feb. 2007.

[3]. R. Anderson, R. Needham, and A. Shamir. The

steganographic file system. In Proceedings of

the International Workshop on Information

Hiding (IWIH 1998), pages 73-82, Portland,

OR, Apr. 1998.

[4]. S. Annapureddy, M. J. Freedman, and D.

Mazières. Shark: Scaling file servers via

cooperative caching. In Proceedings of the 2nd

Symposium on Networked Systems Design and

Implementation (NSDI), pages 129-142, 2005.

[5]. D. Bhagwat, K. Pollack, D. D. E. Long, E. L.

Miller, J.-F. Paris, and T. Schwarz, S. J.

Providing high reliability in a minimum

redundancy archival storage system. In

Proceedings of the 14th International

Symposium on Modeling, Analysis, and

Simulation of Computer and

Telecommunication Systems (MASCOTS ’06),

Monterey, CA, Sept. 2006.

[6]. W. J. Bolosky, S. Corbin, D. Goebel, and J. R.

Douceur. Single instance storage in Windows

2000. In Proceedings of the 4th USENIX

Windows Systems Symposium, pages 13-24.

USENIX, Aug. 2000.

[7]. P. J. Braam. The Lustre storage architecture.

http://www.lustre.org/documentation.html,

Cluster File Systems, Inc., Aug. 2004.

[8]. A. Brinkmann, S. Effert, F. Meyer auf der

Heide, and C. Scheideler. Dynamic and

redundant data placement. In Proceedings of

the 27th International Conference on

Distributed Computing Systems (ICDCS ’07),

2007.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 408

[9]. I. Clarke, O. Sandberg, B. Wiley, and T. W.

Hong. Freenet: A distributed anonymous

information storage and retrieval system.

Lecture Notes in Computer Science, 2009:46-

66, 2001.

[10]. J. R. Douceur, A. Adya, W. J. Bolosky, D.

Simon, and M. Theimer. Reclaiming space from

duplicate files in a serverless distributed file

system. In Proceedings of the 22nd

International Conference on Distributed

Computing Systems (ICDCS ’02), pages 617-

624, Vienna, Austria, July 2002.

[11]. F. Douglis and A. Iyengar. Application-specific

delta-encoding via resemblance detection. In

Proceedings of the 2003 USENIX Annual

Technical Conference, pages 113-126. USENIX,

June 2003.

[12]. D. Goldschlag, M. Reed, and P. Syverson.

Onion routing. Communications of the ACM,

1999.

[13]. G. R. Goodson, J. J. Wylie, G. R. G anger, and

M. K. Reiter. Efficient Byzantine-tolerant

erasure-coded storage. In Proceedings of the

2004 Int’l Conference on Dependable Systems

and Networking (DSN 2004), June 2004.

[14]. H. S. Gunawi, N. Agrawal, A. C. Arpaci-

Dusseau, R. H. Arpaci-Dusseau, and J.

Schindler. Deconstructing commodity storage

clusters. In Proceedings of the 32nd Int’l

Symposium on Computer Architecture, pages

60-71, June 2005.

[15]. S. Hand and T. Roscoe. Mnemosyne: Peer-to-

peer steganographic storage. Lecture Notes in

Computer Science, 2429:130-140, Mar. 2002.

[16]. Health Information Portability and

Accountability Act, Oct. 1996.

[17]. D. Hitz, J. Lau, and M. Malcom. File system

design for an NFS file server appliance. In

Proceedings of the winter 1994USENIX

Technical Conference, pages 235-246, San

Francisco, CA, Jan. 1994.

Author's Profile:

S. Palani working as an Assit.professor

in Sri Venkateswara college of

engineering &technology, Chittoor,

Andhra Pradesh

P.Bharath Kumar Reddy received the

PG degree from Sri Venkateswara

college of engineering& technology

,Chittoor, Andhra Pradesh

K. Roja received the PG degree from

Sri Venkateswara college of

engineering& technology ,Chittoor,

Andhra Pradesh

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

