
CSEIT16117 | Received: 01 August 2016 | Accepted: 11 August 2016 | July-August 2016 [(1)1: 35-39]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2016 IJSRCSEIT | Volume 1 | Issue 1 | ISSN : 2456-3307

35

A Survey on Secure Cloud Storage with Techniques Like Data
Deduplication and Convergent Key management

P. Balasubhramanyam Reddy, G. Nagappan

Department of Computer Science and Engineering, Saveetha Engineering College, Thandalam, Chennai, Tamil Nadu, India

ABSTRACT

Data deduplication is a method for removing duplicate copies of data, It has been largely used in cloud storage to

reduce storage memory and upload bandwidth. It gives a challenge to do secure deduplication in cloud storage. In

encryption methods the keys can be produced but cannot manage huge number of keys. In the first attempt to

formally address the problem of achieving efficient and reliable key management in secure deduplication. The

general approach in which each user holds an independent master key for encrypting the convergent keys and

employing them to the cloud. Such a baseline key management scheme generates an enormous number of keys with

the increasing number of users and requires users to allegiance to protect the master keys. The De-key is the

process ,which creates new construction in which users do not need to manage any keys on their own but instead of

it secure distribute of the convergent key shares across multiple servers. Security analysis demonstrates that De-key

is secure in the proposed security model. Proof is that in realistic environment the De-key used in ramp secret

sharing .which can Demonstrate.

Keywords: De-Duplication, Convergent Encryption, Key Management, Auditing.

I. INTRODUCTION

The advantage of cloud storage motivates enterprises

and organizations to outsource data storage to third-

party cloud providers. One critical challenge of

today’s cloud storage services is the management of

the increasing volume of data. According to the report

of IDC, the volume of data in the will expected to

reach 50-60 trillion giga bytes in 2020. To make data

management scalable, de-duplication has been a well-

known technique to reduce storage space and upload

bandwidth in cloud storage. Instead of keeping

multiple data copies with the same content duplication

redundant data by keeping only one physical copy and

referring other redundant data to that copy. Each such

copy can be defined based on different granularities: it

may refer to either a whole file, or amore fine-grained

fixed-size or variable-size. The commercial cloud

storage services, such as Drop box, Mazy and Memo

pal, have been applying deduplication to user data to

save maintenance cost ,from the user side , data from

outside may have doubt in security and privacy

concerns. In this trust third-party cloud providers to

properly enforce confidentiality, integrity checking,

and access control mechanisms against any insider and

outsider attacks. The de-duplication is improving

storage and bandwidth efficiency, is incompatible with

traditional encryption. Especially different users to

encrypt their data with their own keys. Thus, identical

data copies of different users will lead to different

cipher texts, making de-duplication impossible

Convergent encryption provides a viable option to

enforce data confidentiality while realizing de-

duplication. It encrypts/decrypts data copy with a

convergent key, which is derived by computing the

cryptographic hash value of the content of the data

copy itself. After key generation and data encryption,

users retain the keys and send the cipher text to the

cloud.

Due to encryption is deterministic; the same data,

which already exists copies, will generate the same

convergent key and the same cipher text. This allows

the cloud to perform de-duplication on the ciphertexts.

The ciphertexts can only be decrypted by the

corresponding data owners with their convergent keys.

Volume 1 | Issue 1 | 2016 | www.ijsrcseit.com

 36

In baseline is approach suffers two critical deployment

issues. First, it is inefficient, as it will generate an

enormous number of keys with the increasing number

of users. each user must associate an encrypted

convergent key with each block of its outsource

decrypted data copies, so as to later restore the data

copies. Although different users may share the same

data copies, they must have their own set of

convergent keys so that no other users can access their

files. As a result, the number of convergent keys being

introduced linearly scales with the number of blocks

being stored and the number of users. This key

management overhead becomes more prominent if we

exploit fine-grained block-level de-duplication.

Second, the baseline approach is unreliable, as it

requires each user to dedicatedly protect his own

master key. If the master key is accidentally lost, then

the user data cannot be recovered; if it is compromised

by attackers, then the user data will be leaked. us to

explore how to efficiently and reliably manage

enormous convergent keys, while still achieving

secure de-duplication. To this end, we propose a new

construction called De-key, which provides efficiency

and reliability guarantees for convergent key

management on both user and cloud storage sides.

II. METHODS AND MATERIAL

RELATED WORK

A. Traditional Encryption

To protect the confidentiality of outsourced data,

various cryptographic solutions have been proposed in

the literature. The idea is to builds untraditional

encryption, in which each user encrypts data with an

independent secret key. Some studies which is used to

propose the use of threshold secret sharing to maintain

the robustness of key management.

These do not consider deduplication. Using traditional

encryption, different users will simply encrypt

identical data copies with their own keys, but this will

lead to different cipher texts and hence make de-

duplication impossible.

B. Convergent Encryption

Convergent encryption ensures data privacy in de-

duplication Bellaire Formalize this primitive as

message-locked encryption, and explores its

application in space-efficient secure outsourced

storage. There are also several implementations of

convergent implementations of different convergent

encryption variants for secure de-duplication. It is

known that some commercial cloud storage providers,

such as Betas, also deploy convergent encryption.

However, as stated before, convergent encryption

leads to a significant number of convergent keys.

C. Proof of Ownership

Halevietal. propose ‘‘proofs of ownership’’ (POW)

ford duplication systems, such that a client can

efficiently prove to the cloud storage server that he/she

owns a file without uploading the file itself. Several

POW constructions based on the Merle Hash Tree are

proposed to enable client-side de-duplication, which

include the bounded leakage setting. Pietro and

Sorniotti propose another efficient POW scheme by

choosing the projection of a file onto some randomly

selected bit-positions as the file proof. Note that all the

above schemes do not consider data.

Figure 1. Impact of number of KM-CSPs n on

encoding/decoding times, where r = 2 and n - k =2.

Figure 2. Impact of confidentiality level r on the

encoding/decoding times where n=6

Volume 1 | Issue 1 | 2016 | www.ijsrcseit.com

 37

Architecture

Figure 3. low block diagrams of core modules in two

different approaches. (a) Baseline approach (keeping

the hash key with an encryption scheme).(b) De-key

(keeping the hash key with (n; k, r -RSSS).

Fig. 3 presents the flow block diagrams of core

modules in the baseline approach and De-key that we

implement. In this figure, we omit the ordinary file

transfer and de-duplication modules for simplification.

To make full use of the multi-core feature of

contemporary processors, we assume that these

modules running in parallel on different cores in a

pipeline style. In the baseline approach, we simply

encrypt each hash key H0 with the user’s master key,

while in De-key, we generate n shares of H0.We

choose 4 KB as the default data block size. A larger

data block size (e.g., 8 KB instead of 4 KB) results in

better encoding/decoding performance due to fewer

chunks being managed, but has less storage reduction

offered by de-duplication. Which each data block,

abash key of size 32 bytes is generated using the hash

function SHA-256, which belongs to the family of

SHA-2that is now recommended by the US National

Institute of Standards and Technology (NIST). In

addition, we adopt the symmetric-key encryption

algorithm AES-256in Cipher-Block Chaining (CBC)

mode as the default encryption algorithm. Both SHA-

256 and AES-256 are implemented using the EVP

library of OpenSSL Version1.0.1e.

We implement the RSSS based on Jerasure .Regarding

to the encoding and decoding modules in Fig. 1b, the

choice of code symbol size w (in bits) deserves our

discussion here. For an erasure code, a code symbol of

size w bits refers to a basic unit of encoding and

decoding operations, both of which are performed in a

finite field. In the RSSS, we choose the erasure code

whose generator matrix is a Cauchy matrix, and thus,

w should meet the condition. However, when each

hash key is divided into pieces with a size of multiple

w, its size (i.e., 32 bytes) is often not a multiple of w.

We thus often need to pad additional zeros to fill in the

Pieces, resulting in different storage blow up ratios.

Figure 4. (a), (b)

Fig. 4a shows the storage blowups ratios versus

different values of w for (6, 4, 2)-RSSS. We see that

for some w, the storage blowups ratio can be much

higher than the theoretical value calculated by n.

However, we find that if the minimum w is chosen,

the practical storage blowup can often be closely

matched to the theoretical value. In addition, we

evaluate the corresponding encoding and decoding

times on an Intel Xeon E5530 (2.40 GHz)server with

Linux 3.2.0-23-generic OS, and the results are shown

in Fig. 2b. We find that the encoding and decoding

times increase with w. Therefore, our De-key

implementation always chooses the minimum w that

meets w.

Volume 1 | Issue 1 | 2016 | www.ijsrcseit.com

 38

III. RESULTS AND DISCUSSION

In discuss of implementation details of De-key. De-

key builds on the Ramp secret sharing scheme(RSSS)

to distribute the shares of convergent keys across

multiple key servers.

A. RSSS with Pseudo Randomness

In De-key, the RSSS secret is the hash key H0 of a

data block B, where H0=hash(B) .Recall the Share

function of the (n; k; r)-RSSS embeds r random pieces

to achieve a confidentiality level of r. One challenges

that randomization conflicts with de-duplication, since

the random pieces cannot be de-duplicated with each

other. Instead of directly adopting RSSS, we here

replace these random pieces with pseudorandom

pieces in our De-key implementation.

It generates the r pseudorandom pieces as follows. Let

M=[r/(k-r)]. The first generating m additional hash

valuesasH1 = hash(B+1); H2 = hash(B+2); . . .;

Hm=hash(B+ m). We then fill in the r pieces with the

generated m additional hash values H1;H2; . . .;Hm.

These r pieces are pseudorandom because

1. H1;H2; . . .;Hm cannot be guessed by attackers

along as the corresponding data block B is

unknown; and

2. H1;H2; . . .;Hm together with H0 cannot be

deduced from each other as long as the

corresponding data block B is unknown.

The parameters n, k, and r determine the following

four factors,

 Confidentiality level: It is decided by the

parameter r.

 Reliability level : It depends on the parameters n

and k, and can be defined by n _ k.

 Storage blow-up : It determines the key

management overhead and depends on the

parameters n, k, and r.

 It can be theoretically calculated by n /k-r.

 Performance: It refers to the encoding

performance and decoding performance when

using the k-of-n erasure code in the Share and

Recover functions, respectively.

Fig. 1 presents the flow block diagrams of core

modules in the baseline approach and De-key that we

implement. In this figure, we omit the ordinary file

transfer and de-duplication modules for simplification.

To make full use of the multi-core feature of

contemporary processors, we assume that these

modules running in parallel on different cores in a

pipeline style. In the baseline approach, we simply

encrypt each hash key H0 with the user’s master-key,

while in De-key, we generate n shares of H0.

The 4 KB is chosen as the default data block size. A

larger data block size results in better

encoding/decoding performance due to fewer chunks

being managed, but has less storage reduction offered

by de-duplication. For each data block, abash key of

size 32 bytes is generated using the hash.

Function SHA-256, which belongs to the family of

SHA-2that is now recommended by the US National

Institute of Standards and Technology (NIST) . In

addition, we adopt the symmetric-key encryption

algorithm AES-256in Cipher-Block Chaining (CBC)

mode as the default encryption algorithm. Both SHA-

256 and AES-256 are implemented using the EVP

library of Opens’ Version1.0.10.

The implementation of RSSS based on Jerasure

Version 1.2. Regarding to the encoding and decoding

modules in Fig. 1b, the choice of code symbol size w

(in bits) deserves our discussion here. For an erasure

code, a code symbol of size w bits refers to a basic

unit of encoding and decoding operations, both of

which are performed in a finite field GF(2w). In the (n,

k, r)-RSSS, we choose the erasure code .Theshould

meet the condition 2w > n+k . However, when each

hash key is divided into (k- r) pieces with a size of

multiple w, its size (i.e., 32 bytes) is often not a

multiple of w multiplied with (k-r) we thus often need

to pad additional zeros to fill in the (k-r) pieces,

resulting in different storage blow up ratios.

IV.CONCLUSION

The De-key is an efficient and reliable convergent key

management scheme for secure de-duplication. De-

key applies de-duplication among convergent keys and

distributes convergent key shares across multiple key

servers, while preserving semantic security of

convergent keys and confidentiality of outsourced data.

Volume 1 | Issue 1 | 2016 | www.ijsrcseit.com

 39

We implement De-key using the Ramp secret sharing

scheme and demonstrate that it incurs small

encoding/decoding overhead compared to the network

transmission overhead in the regular upload/download

operations.

The audit of the file sharing and time can be recorded

and space can be utilise in various methods and make

it less expensive de-duplication can also be tried in

data warehousing although backup ,replication there

yet to we can implement this technology we can help

to make more free space and make It a low cost.

V. REFERENCES

[1] A. Shamir, "How to Share a Secret,". ACM, vol.

22,no. 11, pp. 612-613, 1979.

[2] M.W. Storer, K. Greenan, D.D.E. Long, and E.L.

Miller, "Secure Data De-duplication," in Proc.

Storages, 2008, pp. 1-10.

[3] Y. Tang, P.P. Lee, J.C. Lui, and R. Perlman, "Secure

Overlay Cloud Storage with Access Control and

Assured Deletion,"IEEE Trans. Dependable Secure

Computer., vol. 9, no. 6, pp. 903-916,Nov./Dec.

2012.

[4] G. Wallace, F. Douglis, H. Qian, P. Shilane, S.

Smaldone,M.hamness, and W. Hsu, "Characteristics

of Backup Workloads in Production Systems," in

Proc. 10th USENIX Conf. FAST,2012, pp. 1-16.

[5] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li,

"Enabling PublicAuditability and Data Dynamics for

Storage Security in Cloud Computing," IEEE Trans.

Parallel Distrib. Syst., vol. 22, no. 5,pp. 847-859,

May 2011.

[6] W. Wang, Z. Li, R. Owens, and B. Bhargava,

"Secure and Efficient Access to Outsourced Data," in

Proc. ACM CCSW,Nov. 2009, pp. 55-66.

[7] Z. Wilcox-O’Hearn and B. Warner, "Tahoe: The

Least-AuthorityFilesystem," in Proc. ACM

StorageSS, 2008, pp. 21-26

[8] A.Yun, C. Shi, and Y. Kim, "On Protecting Integrity

and Confidentiality of Cryptographic File System for

Outsourced Storage," in Proc. ACM CCSW, Nov.

2009, pp. 67-76.

[9] G.R. Blakley and C. Meadows, "Security of Ramp

Schemes," inProc. Adv. CRYPTO, vol. 196, Lecture

Notes in Computer ScienceG.R. Blakley and D.

Chaum, Eds., 1985, pp. 242-268.

[10] A.T. Clements, I. Ahmad, M. Vilayannur, and J. Li,

"DecentralizedDeduplication in San Cluster File

Systems," in Proc.USENIX ATC, 2009, p. 8.

[11] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon, and

M. Theimer,"Reclaiming Space from Duplicate Files

in a ServerlessDistributed.File System," in Proc.

ICDCS, 2002, pp. 617-624.

[12] J. Gantz and D. Reinsel, The Digital Universe in

2020: Big Data,Bigger Digital Shadows, Biggest

Growth in the Far East, Dec. 2012.

[13] R. Geambasu, T. Kohno, A. Levy, and H.M. Levy,

"Vanish:Increasing Data Privacy with Self-

Destructing Data," in Proc.`USENIX Security Symp.,

Aug. 2009, pp. 316-299.

[14] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-

Peleg,"Proofs of Ownership in Remote Storage

Systems," in Proc.ACM Conf. Comput. Commun.

Security, Y. Chen, G. Danezis,and V. Shmatikov,

Eds., 2011, pp. 491-500.

[15] D. Harnik, B. Pinkas, and A. Shulman-Peleg, "Side

Channels in Cloud Services: De-duplication in Cloud

Storage," IEEE SecurityPrivacy, vol. 8, no. 6, pp. 40-

47, Nov./Dec. 2010.

[16] S. Kamara and K. Lauter, "Cryptographic Cloud

Storage," inProc. Financial Cryptography: Workshop

Real-Life Cryptograph.Protocols Standardization,

2010, pp. 136-149.

[17] M. Li, "On the Confidentiality of Information

Dispersal Algorithmsand their Erasure Codes," in

Proc. CoRR, 2012, pp. 1-4abs/1206.4123.

[18] D. Meister and A. Brinkmann, "Multi-Level

Comparison of DataDeduplication in a Backup

Scenario," in Proc. SYSTOR, 2009,pp. 1-12

