
CSEIT16124 | Received: 15 September 2016 | Accepted:  25 September 2016 | September-October-2016 [(2)5: 28-32] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2016 IJSRCSEIT | Volume 1 | Issue 2 | ISSN : 2456-3307 

 

28 

 

A Study of Definite Integrals Using Parseval’s Identity 
Chii-Huei Yu 

Department of Information Technology, Nan Jeon University of Science and Technology, Taiwan 
 

 

ABSTRACT 
 

This paper studies two types of definite integrals. Using Parseval’s identity, we can determine the infinite series 

expressions of the two types of definite integrals. Moreover, we propose two examples to do calculation 

practically. The research method adopted in this study is to find solutions through manual calculations and verify 

these solutions using Maple. This research method not only allows the discovery of calculation errors, but also 

helps modify the original directions of thinking. For this reason, Maple provides insights and guidance regarding 

problem-solving methods. 
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I. INTRODUCTION 

 

The computer algebra system (CAS) has been widely 

employed in mathematical and scientific studies. The 

rapid computations and the visually appealing 

graphical interface of the program render creative 

research possible. Maple possesses significance among 

mathematical calculation systems and can be 

considered a leading tool in the CAS field. The 

superiority of Maple lies in its simple instructions and 

ease of use, which enable beginners to learn the 

operating techniques in a short period. In addition, 

through the numerical and symbolic computations 

performed by Maple, the logic of thinking can be 

converted into a series of instructions. The computation 

results of Maple can be used to modify our previous 

thinking directions, thereby forming direct and 

constructive feedback that can aid in improving 

understanding of problems and cultivating research 

interests. 

In calculus and engineering mathematics courses, there 

are many methods to solve the integral problems 

including change of variables method, integration by 

parts method, partial fractions method, trigonometric 

substitution method, etc. Adams et al. [1], Nyblom [2], 

and Oster [3] provided some methods to solve the 

integral problems. On the other hand, Yu [4-34], Yu 

and Chen [35], and Yu and Sheu [36-38] used some 

techniques, for example, complex power series, 

integration term by term theorem, area mean value 

theorem, and generalized Cauchy integral formula to 

solve some types of integrals. In this article, we study 

the following two types of definite integral problems 

which are not easy to obtain its answer using the 

methods mentioned above. 
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where ,,sr are real number, and 1r . The infinite 

series expressions of the two types of definite integrals 

can be obtained by using Parseval’s identity; they are 

the major results of this paper (i.e., Theorems 1 and 2). 

In addition, we propose two examples to demonstrate 

the manual calculations, and verify the results using 

Maple. 

  

II.  METHODS AND MATERIAL 

First, some formulas and Parseval’s identity used in 

this paper are introduced below. 

Formulas 

1) Euler’s formula  

xixix sincos)exp(  , where 1i and x is a 

real number. 

2) DeMoivre’s formula  

pxipxxix p sincos)sin(cos  , where p is an 

integer, and x is a real number. 

3) Taylor series expansions                      
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where z is a complex number, and 1z .  
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where z, are complex numbers.      

Parseval’s identity 

If )(xf and )(xg are two square integrable (with 

respect to Lebesgue measure), complex valued 

functions defined on R of period 2 with Fourier 

series expansions 
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III. RESULTS AND DISCUSSION 

Main Results 

In the following, we use Parseval’s identity to 

determine the infinite series expressions of the definite 

integrals (1) and (2). 

Theorem 1  Suppose that ,,sr are real numbers, 

and 1r , then 
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Proof Let ),exp(  i )]exp(1ln[)( ixrxf   

and )]exp(exp[)( ixsxg  , then  
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On the other hand, by Eqs. (3), (4) and DeMoivre’s 

formula, we have 
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Thus, by Parseval’s identity we obtain 
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It follows from Eq. (7) and the real parts of both sides 

of Eq. (8) are equal that the desired result holds.     

q.e.d. 

Theorem 2  If the assumptions are the same as 

Theorem 1, then 
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Proof  Using Eq. (7) and by the imaginary parts of 

both sides of Eq. (8) are equal, the desired result holds.             

q.e.d. 

 

Examples 

For the definite integral problems discussed in this 

study, two examples are provided and we use 

Theorems 1 and 2 to obtain their infinite series 

expressions. Moreover, Maple is used to calculate the 

approximations of these definite integrals and their 

infinite series expressions for verifying our answers. 

Example 1 Let 4/1r , 5s , and 3/  in 

Theorem 1, then by Eq. (6) we have 
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Next, we employ Maple to verify the correctness of Eq. 

(10). 

>evalf(int(exp(5*cos(x+Pi/3))*(1/2*cos(5*sin(x+Pi/3))

*ln(17/16+1/2*cos(x))+sin(5*sin(x+Pi/3))*arctan(sin(x

)/(4+cos(x)))),x=0..2*Pi),16);  

4.563200959177383 

>evalf(-2*Pi*sum((-

5/4)^n*cos(n*Pi/3)/(n*n!),n=1..infinity),16);  

4.563200959177382 

Example 2 In Theorem 2, if 3/1r , 7s , and 

4/  , then using Eq. (9) yields 

dx
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We also use Maple to verify the correctness of Eq. (11). 

>evalf(int(exp(7*cos(x+Pi/4))*(-

1/2*sin(7*sin(x+Pi/4))*ln(10/9+2/3*cos(x))+cos(7*sin

(x+Pi/4))*arctan(sin(x)/(3+cos(x)))),x=0..2*Pi),16);  

-4.627451284683444 

>evalf(2*Pi*sum((-

7/3)^n*sin(n*Pi/4)/(n*n!),n=1..infinity),16);  

-4.627451284683444 
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IV.CONCLUSION 

 

In this article, we mainly use Parseval’s identity to 

solve two types of definite integrals. In fact, the 

applications of Parseval’s identity are extensive, and 

can be used to easily solve many difficult problems; we 

endeavor to conduct further studies on related 

applications. Moreover, Maple also plays a vital 

assistive role in problem-solving. In the future, we will 

extend the research topic to other calculus and 

engineering mathematics problems and use Maple to 

verify our answers. These results will be used as 

teaching materials for Maple on education and research 

to enhance the connotations of calculus and 

engineering mathematics. 
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