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ABSTRACT 
 

Class evolution is an important research topic for data stream mining. All previous studies implicitly regard class 

evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario 

where classes emerge or disappear gradually. A class-based ensemble approach, namely class-based ensemble for 

class evolution. Emprical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in 

comparison to existing class evolution adaptation methods. With the rapid development of incremental learning and 

online, learning ,mining tasks in the context of data stream have been widely studied. Generally data stream mining 

refers to the mining task that are conducted on a sequence of rapidly arriving data records. As the environment 

where the data are collected may change dynamically, the data distribution may also change accordingly. This 

phenomenon referred to as concept drift is one of the most important challenges in data stream mining. A data 

stream mining technique should be capable of constructing and dynamically updating a model in order to learn 

dynamic changes.   

Keywords : Class-based ensemble for class evolution, class incremental learning, Drift detection method, Machine 

learning repository, Twitter crawl dataset and chunk-by-chunk. 

 

I. INTRODUCTION 

 

It is the process of extracting knowledge structures 

from continuous, rapid data records. A data stream is 

an ordered sequence of instances that in many 

applications of data stream mining can be read only 

once or a small number of times using limited 

computing and storage capabilities. Examples of data 

streams include computer network traffic, phone 

conversations, ATM transactions, web searches, and 

sensor data. Data stream mining can be considered a 

subfield of data mining, machine learning, and 

knowledge discovery. 

 

In many data stream mining applications, the goal is to 

predict the class or value of new instances in the data 

stream given some knowledge about the class 

membership or values of previous instances in the data 

stream. Machine learning techniques can be used to 

learn this prediction task from labeled examples in an 

automated fashion. Often, concepts from the field of 

incremental learning, a generalization of Incremental 

heuristic search are applied to cope with structural 

changes, on-line learning and real-time demands. In 

many applications, especially operating within non-

stationary environments, the distribution underlying the 

instances or the rules underlying their labeling may 

change over time, i.e. the goal of the prediction, the 

class to be predicted or the target value to be predicted, 

may change over time. This problem is referred to as 

concept drift. 

 

To deal with these huge amounts of data in a 

responsible way, green computing is becoming a 

necessity. Green computing is the study and practice of 

using computing resources efficiently. A main 

approach to green computing is based on algorithmic 

efficiency. The amount of computer resources required 

for any given computing function depends on the 

efficiency of the algorithms used. As the cost of 

hardware has declined relative to the cost of Energy, 

the energy efficiency and environmental impact of 
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computing systems and programs are receiving 

increased attention. More recently the need to process 

larger amounts of data has motivated the field of data 

mining. Ways are investigated to reduce the 

computation time and memory needed to process large 

but static data sets. In analogy to a database-

management system, we can view a stream processor 

as a kind of data-management system, the high-level 

organization of which is suggested in. Any number of 

streams can enter the system. Each stream can provide 

elements at its own schedule; they need not have the 

same data rates or data types, and the time between 

elements of one stream need not be uniform. The fact 

that the rate of arrival of stream elements is not under 

the control of the system distinguishes stream 

processing from the processing of data that goes on 

within a database-management system. The latter 

system controls the rate at which data is read from the 

disk, and therefore never has to worry about data 

getting lost as it attempts to execute queries. Is a 

computer programming paradigm, equivalent to 

dataflow programming, event stream processing, and 

reactive programming that allows some applications to 

more easily exploit a limited form of parallel 

processing. Such applications can use multiple 

computational units, such as the FPUs on a GPU or 

field programmable gate arrays (FPGAs), without 

explicitly managing allocation, synchronization, or 

communication among those units. 

 

Kernel functions are usually pipelined, and local on-

chip memory is reused to minimize external memory 

bandwidth. Since the kernel and stream abstractions 

expose data dependencies, compiler tools can fully 

automate and optimize on-chip management tasks. 

Stream processing hardware can use core boarding, for 

example, to launch DMA sat runtime, when 

dependencies become known. The elimination of 

manual DMA management reduces software 

complexity, and the elimination of hardware caches 

reduces the amount of the area not dedicated to 

computational units such as ALUs. 

 

From the core PrefDB query processing strategies that 

blend preference evaluation into query processing, we 

have also implemented a set of plug-in methods, which 

are described in the Appendix. Below is an overview of 

the core PrefDB modules 

 

 The profile manager selects from the database 

preferences that can be combined with the 

conditions of the issued query. For this purpose, we 

use the preference selection algorithm proposed in 

[20]  

 The query parser takes as input the query and 

preferences and generates an extended query plan 

that is passed to the PrefDB query optimizer.  

 The query optimizer improves the input plan by 

applying a set of algebraic rules. This improved 

plan and a cost model for preference evaluation are 

used for generating alternative plans that interleave 

preference evaluation and query processing in 

different ways and for picking the plan with the 

cheapest estimated cost.  

 The execution engine realizes the execution of the 

query plan selected by the query optimizer using 

one of our execution methods. We discuss  

II. METHODS AND MATERIAL 

 

A. Related Work 

 

The concept of preference-aware query processing 

appears in many applications, where there is a matter of 

choice among alternatives, including query 

personalization [10], [18], [20], recommendations [4] 

and multi-criteria decision making [9], [13]. We 

discuss prior work with respect to how preferences are 

represented in the context of relational data and how 

they are integrated and processed in queries. In 

representing preferences, there are two approaches. In 

the qualitative approach, preferences are specified 

using binary predicates called preference relations [5], 

[10], [18]. In quantitative approaches, preferences are 

expressed as scores assigned to tuples [6], [23] be 

specified based on any combination of scores, 

confidences and context. Our framework allows us to 

process in a uniform way all these different query and 

preference types. In terms of preference integration and 

processing, one approach is to translate preferences into 

conventional queries and execute them over the DBMS 

[14], [19], [20], [21], [24]. Several efficient algorithms 

have been proposed for processing different types of 

queries, including top-k queries [13] and skylines [9]. 

These algorithms as well as query translation methods 

are typically implemented outside the DBMS. Thus, 

they can only apply coarse grained query optimizations, 

such as reducing the number of queries sent to the 

DBMS. Further, as we will also demonstrate 
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experimentally plug-in methods do not scale well when 

faced with multi-join queries or queries involving many 

preferences. Native implementations modify the 

database engine by adding specific physical operators 

and algorithms. RankSQL [23] extends the relational 

algebra with a new operator called rank that enables 

pipelining and hence optimizing top-k queries. Another 

example of operator is the winnow operator [10], which 

selects all tuples corresponding to the Pareto optimal 

set. Our approach is different from existing works in 

several ways. First, existing techniques are limited to a 

particular type of query. In contrast to these approaches, 

we consider preference evaluation (how preferences are 

evaluated on data) and selection of the preferred tuples 

that will comprise the query answer as two operations. 

We focus on preference evaluation as a single operator 

that can be combined with other operators and we use 

its algebraic properties in order to develop generic 

query optimization and processing techniques. Finally, 

we follow a hybrid implementation that is closer to the 

database than plug-in approaches yet not purely native, 

thus combining the pros of both worlds. A different 

approach to flexible processing of queries with 

preferences is enabled in FlexPref [22]. FlexPref allows 

integrating different preference algorithms into the 

database with minimal changes in the database engine 

by simply defining rules that determine the most 

preferred tuples. Once these rules are specified a new 

operator can be used inside queries. It is worth noting 

that both FlexPref and our work are motivated by the 

limitations of plug-in and native approaches. FlexPref 

approaches the problem from an extensibility 

viewpoint. Our focus is on the problem of preference 

evaluation as an operator that is separate from the 

selection of preferred answers, and we study how this 

operator can be integrated into query processing in an 

effective yet not obtrusive to the database engine way. 

 

B. Proposed Methodology 

 

In this paper, we first construct an extended query plan 

that contains all operators that comprise a query and we 

optimize it. Then, for processing the optimized query 

plan, our general strategy is to blend query execution 

with preference evaluation and leverage the native 

query engine to process parts of the query that do not 

involve a prefer operator. Given a query with 

preferences, the goal of query optimization is to 

minimize the cost related with preference evaluation. 

Based on the algebraic properties of prefer, we apply a 

set of heuristic rules aiming to minimize the number of 

tuples that are given as input to the prefer operators. 

We further provide a cost-based query optimization 

approach. Using the output plan of the first step as a 

skeleton and a cost model for preference evaluation, the 

query optimizer calculates the costs of alternative plans 

that interleave preference evaluation and query 

processing in different ways. Two plan enumeration 

methods, i.e., a dynamic programming and a greedy 

algorithm are proposed. For executing an optimized 

query plan with preferences, we describe an improved 

version of our processing algorithm (GBU) (an earlier 

version is described in. The improved algorithm uses 

the native query engine in a more efficient way by 

better grouping operators together and by reducing the 

out-of-the-engine query processing. 

 

Modules: 

 

Registration & Interest Sum up 

Query Formation 

Query Optimization & Execution 

 

A preferential query combines p-relations, extended 

relational and prefer operators and returns a set of 

tuples that satisfy the boolean query conditions along 

with their score and confidence values that have been 

calculated after evaluating all prefer operators on the 

corresponding relations. Intuitively, the better a tuple 

matches preferences and the more (or more confident) 

preferences it satisfies, the higher its final score and 

confidence will be, respectively. The query parser adds 

a prefer operator for each preference. Finally, the query 

parser checks for each preference, whether it involves 

an attribute (either in the conditional or the scoring part) 

that does not appear in the query and modifies project 

operators, such that these attributes will be projected as 

well of tuples that are given as input to the prefer 

operators. We further provide a cost-based query 

optimization approach into the database with minimal 

Proportional to the number of tuples flowing through 

the operators in the query plan. Assuming a fixed 

position for the other operators, the goal of our query 

optimizer is essentially to place the prefer operators 

inside the plan, such that the number of tuples flowing 

through the score tables is minimized. The execution 

engine of PrefDB is responsible for processing a 

preferential query and supports various algorithms. 

Existing techniques are limited to a particular type of 

query. In contrast to these approaches, we consider 
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preference evaluation (how preferences are evaluated 

on data) and selection of the preferred tuples that will 

comprise the query answer as two operations. 

 

III. RESULTS AND DISCUSSION 
 

The implementation results can be shown as figure 

below 

 

Figure 1: Upload Dataset 

 

Figure 2 : Browse a Dataset 

 

During Registration, each and every user will provide 

their basic information for authentication. After that, 

user has to provide their profile information and their 

interests about their movie. Based upon their, and with 

our movie datasets, we can be able to analyze their 

interest about the movie and have to provide the 

recommended movies to the particular user 

 

 

Figure 3: Pre processing 

 

Figure 4 : Decision tree 

IV.CONCLUSION 
 

In this project, previous investigations on data stream 

mining assume class evolution to be the transient 

changes of classes, which does not hold for many real-

world scenarios. In this work, class evolution is 

modelled as a gradual process, i.e., the sizes of classes 

increase or shrinks gradually. A new data stream 

mining approach, CBCE, is proposed to tackle the class 

evolution problem in this scenario. CBCE is developed 

based on the idea of a class-based ensemble. 

Specifically, CBCE maintains a base learner for each 

class and updates the base learners whenever a new 

example arrives. Furthermore, a novel under-sampling 
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method is designed for handling the dynamic class-

imbalance problem caused by gradually evolved 

classes. 
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