
CSEIT172213 | Received: 05 March 2017 | Accepted: 15 March 2017 | March-April-2017 [(2)2: 98-102]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

98

Online Ensemble Learning of Data Streams with Gradually
Evolved

A. Auysha1, Dr. A. Jayachandran2

¹PG Scholar, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu, India

²Research Supervisor, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu, India

ABSTRACT

Class evolution is an important research topic for data stream mining. All previous studies implicitly regard class

evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario

where classes emerge or disappear gradually. A class-based ensemble approach, namely class-based ensemble for

class evolution. Emprical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in

comparison to existing class evolution adaptation methods. With the rapid development of incremental learning and

online, learning ,mining tasks in the context of data stream have been widely studied. Generally data stream mining

refers to the mining task that are conducted on a sequence of rapidly arriving data records. As the environment

where the data are collected may change dynamically, the data distribution may also change accordingly. This

phenomenon referred to as concept drift is one of the most important challenges in data stream mining. A data

stream mining technique should be capable of constructing and dynamically updating a model in order to learn

dynamic changes.

Keywords : Class-based ensemble for class evolution, class incremental learning, Drift detection method, Machine

learning repository, Twitter crawl dataset and chunk-by-chunk.

I. INTRODUCTION

It is the process of extracting knowledge structures

from continuous, rapid data records. A data stream is

an ordered sequence of instances that in many

applications of data stream mining can be read only

once or a small number of times using limited

computing and storage capabilities. Examples of data

streams include computer network traffic, phone

conversations, ATM transactions, web searches, and

sensor data. Data stream mining can be considered a

subfield of data mining, machine learning, and

knowledge discovery.

In many data stream mining applications, the goal is to

predict the class or value of new instances in the data

stream given some knowledge about the class

membership or values of previous instances in the data

stream. Machine learning techniques can be used to

learn this prediction task from labeled examples in an

automated fashion. Often, concepts from the field of

incremental learning, a generalization of Incremental

heuristic search are applied to cope with structural

changes, on-line learning and real-time demands. In

many applications, especially operating within non-

stationary environments, the distribution underlying the

instances or the rules underlying their labeling may

change over time, i.e. the goal of the prediction, the

class to be predicted or the target value to be predicted,

may change over time. This problem is referred to as

concept drift.

To deal with these huge amounts of data in a

responsible way, green computing is becoming a

necessity. Green computing is the study and practice of

using computing resources efficiently. A main

approach to green computing is based on algorithmic

efficiency. The amount of computer resources required

for any given computing function depends on the

efficiency of the algorithms used. As the cost of

hardware has declined relative to the cost of Energy,

the energy efficiency and environmental impact of

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 99

computing systems and programs are receiving

increased attention. More recently the need to process

larger amounts of data has motivated the field of data

mining. Ways are investigated to reduce the

computation time and memory needed to process large

but static data sets. In analogy to a database-

management system, we can view a stream processor

as a kind of data-management system, the high-level

organization of which is suggested in. Any number of

streams can enter the system. Each stream can provide

elements at its own schedule; they need not have the

same data rates or data types, and the time between

elements of one stream need not be uniform. The fact

that the rate of arrival of stream elements is not under

the control of the system distinguishes stream

processing from the processing of data that goes on

within a database-management system. The latter

system controls the rate at which data is read from the

disk, and therefore never has to worry about data

getting lost as it attempts to execute queries. Is a

computer programming paradigm, equivalent to

dataflow programming, event stream processing, and

reactive programming that allows some applications to

more easily exploit a limited form of parallel

processing. Such applications can use multiple

computational units, such as the FPUs on a GPU or

field programmable gate arrays (FPGAs), without

explicitly managing allocation, synchronization, or

communication among those units.

Kernel functions are usually pipelined, and local on-

chip memory is reused to minimize external memory

bandwidth. Since the kernel and stream abstractions

expose data dependencies, compiler tools can fully

automate and optimize on-chip management tasks.

Stream processing hardware can use core boarding, for

example, to launch DMA sat runtime, when

dependencies become known. The elimination of

manual DMA management reduces software

complexity, and the elimination of hardware caches

reduces the amount of the area not dedicated to

computational units such as ALUs.

From the core PrefDB query processing strategies that

blend preference evaluation into query processing, we

have also implemented a set of plug-in methods, which

are described in the Appendix. Below is an overview of

the core PrefDB modules

 The profile manager selects from the database

preferences that can be combined with the

conditions of the issued query. For this purpose, we

use the preference selection algorithm proposed in

[20]

 The query parser takes as input the query and

preferences and generates an extended query plan

that is passed to the PrefDB query optimizer.

 The query optimizer improves the input plan by

applying a set of algebraic rules. This improved

plan and a cost model for preference evaluation are

used for generating alternative plans that interleave

preference evaluation and query processing in

different ways and for picking the plan with the

cheapest estimated cost.

 The execution engine realizes the execution of the

query plan selected by the query optimizer using

one of our execution methods. We discuss

II. METHODS AND MATERIAL

A. Related Work

The concept of preference-aware query processing

appears in many applications, where there is a matter of

choice among alternatives, including query

personalization [10], [18], [20], recommendations [4]

and multi-criteria decision making [9], [13]. We

discuss prior work with respect to how preferences are

represented in the context of relational data and how

they are integrated and processed in queries. In

representing preferences, there are two approaches. In

the qualitative approach, preferences are specified

using binary predicates called preference relations [5],

[10], [18]. In quantitative approaches, preferences are

expressed as scores assigned to tuples [6], [23] be

specified based on any combination of scores,

confidences and context. Our framework allows us to

process in a uniform way all these different query and

preference types. In terms of preference integration and

processing, one approach is to translate preferences into

conventional queries and execute them over the DBMS

[14], [19], [20], [21], [24]. Several efficient algorithms

have been proposed for processing different types of

queries, including top-k queries [13] and skylines [9].

These algorithms as well as query translation methods

are typically implemented outside the DBMS. Thus,

they can only apply coarse grained query optimizations,

such as reducing the number of queries sent to the

DBMS. Further, as we will also demonstrate

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 100

experimentally plug-in methods do not scale well when

faced with multi-join queries or queries involving many

preferences. Native implementations modify the

database engine by adding specific physical operators

and algorithms. RankSQL [23] extends the relational

algebra with a new operator called rank that enables

pipelining and hence optimizing top-k queries. Another

example of operator is the winnow operator [10], which

selects all tuples corresponding to the Pareto optimal

set. Our approach is different from existing works in

several ways. First, existing techniques are limited to a

particular type of query. In contrast to these approaches,

we consider preference evaluation (how preferences are

evaluated on data) and selection of the preferred tuples

that will comprise the query answer as two operations.

We focus on preference evaluation as a single operator

that can be combined with other operators and we use

its algebraic properties in order to develop generic

query optimization and processing techniques. Finally,

we follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. Once these rules are specified a new

operator can be used inside queries. It is worth noting

that both FlexPref and our work are motivated by the

limitations of plug-in and native approaches. FlexPref

approaches the problem from an extensibility

viewpoint. Our focus is on the problem of preference

evaluation as an operator that is separate from the

selection of preferred answers, and we study how this

operator can be integrated into query processing in an

effective yet not obtrusive to the database engine way.

B. Proposed Methodology

In this paper, we first construct an extended query plan

that contains all operators that comprise a query and we

optimize it. Then, for processing the optimized query

plan, our general strategy is to blend query execution

with preference evaluation and leverage the native

query engine to process parts of the query that do not

involve a prefer operator. Given a query with

preferences, the goal of query optimization is to

minimize the cost related with preference evaluation.

Based on the algebraic properties of prefer, we apply a

set of heuristic rules aiming to minimize the number of

tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization

approach. Using the output plan of the first step as a

skeleton and a cost model for preference evaluation, the

query optimizer calculates the costs of alternative plans

that interleave preference evaluation and query

processing in different ways. Two plan enumeration

methods, i.e., a dynamic programming and a greedy

algorithm are proposed. For executing an optimized

query plan with preferences, we describe an improved

version of our processing algorithm (GBU) (an earlier

version is described in. The improved algorithm uses

the native query engine in a more efficient way by

better grouping operators together and by reducing the

out-of-the-engine query processing.

Modules:

Registration & Interest Sum up

Query Formation

Query Optimization & Execution

A preferential query combines p-relations, extended

relational and prefer operators and returns a set of

tuples that satisfy the boolean query conditions along

with their score and confidence values that have been

calculated after evaluating all prefer operators on the

corresponding relations. Intuitively, the better a tuple

matches preferences and the more (or more confident)

preferences it satisfies, the higher its final score and

confidence will be, respectively. The query parser adds

a prefer operator for each preference. Finally, the query

parser checks for each preference, whether it involves

an attribute (either in the conditional or the scoring part)

that does not appear in the query and modifies project

operators, such that these attributes will be projected as

well of tuples that are given as input to the prefer

operators. We further provide a cost-based query

optimization approach into the database with minimal

Proportional to the number of tuples flowing through

the operators in the query plan. Assuming a fixed

position for the other operators, the goal of our query

optimizer is essentially to place the prefer operators

inside the plan, such that the number of tuples flowing

through the score tables is minimized. The execution

engine of PrefDB is responsible for processing a

preferential query and supports various algorithms.

Existing techniques are limited to a particular type of

query. In contrast to these approaches, we consider

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 101

preference evaluation (how preferences are evaluated

on data) and selection of the preferred tuples that will

comprise the query answer as two operations.

III. RESULTS AND DISCUSSION

The implementation results can be shown as figure

below

Figure 1: Upload Dataset

Figure 2 : Browse a Dataset

During Registration, each and every user will provide

their basic information for authentication. After that,

user has to provide their profile information and their

interests about their movie. Based upon their, and with

our movie datasets, we can be able to analyze their

interest about the movie and have to provide the

recommended movies to the particular user

Figure 3: Pre processing

Figure 4 : Decision tree

IV.CONCLUSION

In this project, previous investigations on data stream

mining assume class evolution to be the transient

changes of classes, which does not hold for many real-

world scenarios. In this work, class evolution is

modelled as a gradual process, i.e., the sizes of classes

increase or shrinks gradually. A new data stream

mining approach, CBCE, is proposed to tackle the class

evolution problem in this scenario. CBCE is developed

based on the idea of a class-based ensemble.

Specifically, CBCE maintains a base learner for each

class and updates the base learners whenever a new

example arrives. Furthermore, a novel under-sampling

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 102

method is designed for handling the dynamic class-

imbalance problem caused by gradually evolved

classes.

V. REFERENCES

[1]. M. M. Gaber, A. Zaslavsky, and S.

Krishnaswamy, "Mining data streams: A

review," SIGMOD Rec., vol. 34, no. 2, pp. 18–

26, 2005.

[2]. P. Domingos and G. Hulten, "Mining high-speed

data streams," in Proc. 6th ACM SIGKDD Int.

Conf. Know. Discovery Data Mining, 2000, pp.

71–80.

[3]. J. Gama, I. Zliobait e, A. Bifet, M. Pechenizkiy,

and A. Bouchachia, "A survey on concept drift

adaptation," ACM Compute. Surv. vol. 46, no. 4,

pp. 44:1–44:37, Mar. 2014.

[4]. L. Minku, A. White, and X. Yao, "The impact of

diversity on online ensemble learning in the

presence of concept drifts," IEEE Trans. Know.

Data Eng., vol. 22, no. 5, pp. 730–742, May

2010.

[5]. L. Minku and X. Yao, "DDD: A new ensemble

approach for dealing with concept drift," IEEE

Trans. Know. Data Eng., vol. 24, no. 4, pp. 619–

633, Apr. 2012.

[6]. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby,

and R. Gavalda, "New ensemble methods for

evolving data streams," in Proc. 15th ACM

SIGKDD Int. Conf. Know. Discovery Data

Mining, 2009,pp. 139–148.

[7]. J. Liu, X. Li, and W. Zhong, "Ambiguous

decision trees for mining concept-drifting data

streams," Pattern Recog. Lett. vol. 30, no. 15,pp.

1347–1355, 2009.

[8]. Z.-H. Zhou and Z.-Q. Chen, "Hybrid decision

tree," Know.-Based Syst., vol. 15, no. 8, pp. 515–

528, 2002.

[9]. M. Masud, J. Gao, L. Khan, J. Han, and B.

Thuraisingham,"Integrating novel class detection

with classification for concept drifting data

streams," in Proc. Eur. Conf. Mach. Learn.

Know. Discovery Databases, 2009, vol. 5782, pp.

79–94.

[10]. M. Masud, Q. Chen, L. Khan, C. Aggarwal, J.

Gao, J. Han, and B. Thuraisingham, "Addressing

concept-evolution in concept drifting data

streams," in Proc. IEEE 10th Int. Conf. Data

Mining, Dec. 2010, pp. 929–934.

