
CSEIT1722229 | Received : 01 April 2017 | Accepted : 12 April 2017 | March-April-2017 [(2)2: 306-308]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

306

Efficient Multicast Delivery for Data Redundancy Minimization

over Wireless Data Centres

A. Sudalaimani1, D. Stalin David2

¹PG Scholar, Department of M. Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu, India

²Research Supervisor, Department of M. Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu,

India

ABSTRACT

With the explosive growth of cloud-based services, large-scale data centers are widely built for housing critical

computing resources to gain significant economic benefits. In data centers, the cloud services are generally

accomplished by multicast based group communications. Recently, many well-known industries, such as Microsoft,

Google and IBM, adopt high speed wireless technologies to augment network capacity in data centers. However,

those well-known multicast delivery schemes for traditional wired data centers. We prove the problem are NP-hard

and propose efficient heuristic algorithms for the two problems. Based on real traces and practical settings obtained

from commercial data centers, a series of experiment conducted and the experimental results show that our proposed

algorithm are effective for reducing multicast data traffic. The results also provide useful insights into the design of

multicast tree construction and maintenance for wireless data canter networks. Cloud data owners prefer to

outsource documents in an encrypted form for the purpose of privacy preserving. Therefore it is essential to develop

efficient and reliable cipher text search techniques. In this paper, a hierarchical clustering method is proposed to

support more semantistics and also meet the command for fast cipher text search with in a big data environment.

The proposed hierarchical approach clusters the documents based on the minimum relevance threshold. The results

show that with a sharp increase of documents in the data set. The search time of the proposed method increases

exponentially. Furthermore, the proposed method has advantage over the traditional method in the rank privacy and

relevance of retrieved documents. However, Bandwidth constraints may restrict the number of reference views sent

to clients, limiting the quality of the synthesized viewpoints. In this work, we study the problem of in-network

reference view synthesis aimed at improving the navigation quality at the clients. We consider a distributed cloud

network architecture, where data stored in a main cloud is delivered to end users with the help of cloudlets, i. e .,

resource-rich proxies close to the users. We argue that, in case of limited bandwidth from the cloudlet to the users,

re-sampling at the could let the viewpoints of the 3D scene (i. e ., synthesizing novel virtual views in the cloudlets to

be used as new references to the decoder) is beneficial compared to mere sub sampling of the original set of camera

views. We therefore cast a new reference view selection problem that seeks the subset of views minimizing the

distortion over a view navigation window defined by the user under bandwidth constraints.

Keywords : PrefDB, data, SQL, Query parser, tuples.

I. INTRODUCTION

PrefDB, a preference-aware relational system that
transparently and efficiently handles queries with

preferences. In its core, PrefDB employs a preference-

aware data model and algebra, where preferences are

treated as first-class citizens. We define a reference

using a condition on the tuples affected, a scoring

function that scores these tuples, and a confidence that

shows how confident these scores are. In our data

model, tuples carry scores with confidences. Our

algebra comprises the standard relational operators

extended to handle scores and confidences. For

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 752

example, the join operator will join two tuples and

compute a new score-confidence pair by combining the

scores and confidences that come with the two tuples.

In addition, our algebra contains a new operator, prefer,

that evaluates a preference on a relation, i. e ., given as

inputs a relation and a preference on this relation,

prefer outputs the relation with new scores and

confidences. During preference evaluation, both the

conditional and the scoring part of a preference are

used. The conditional part acts as ‘soft’ constraint that

determines which tuples are scored without

disqualifying any tuples from the query result. In this

way, PrefDB separates preference evaluation from

tuple filtering. This separation is a distinguishing

feature of our work with respect to previous works. It

allows us to define the algebraic properties of the prefer

operator and build generic query optimization and

processing strategies that are applicable regardless of

the type of reference specified in a query or the

expected type of answer. Several approaches to

integrating preferences into database queries have been

proposed and can be roughly divided into two

categories. Plug-in approaches operate on top of the

database engine and they typically translate preferences

into conventional query constructs. On the other hand,

native approaches focus on supporting more efficiently

specific queries, such as top-k or skyline queries, by

injecting new operators inside the database engine.

Unfortunately, both approaches have several

limitations. In plug-in methods, the way preferences

will be used, for example as additional query

constraints or as ranking constructs, the query

execution flow as well as the expected type of answer

(e. g ., top-k or skyline) are all hard-wired in the

method, which hinders application development and

maintenance. On the other hand, native methods

consider preference evaluation and filtering as one

operation. Due to this tight coupling, these methods are

also tailored to one type of query. Furthermore, they

require modifications of the database core, which may

not be feasible or practical in real life. Overall, both

native and plug-in approaches do not offer a holistic

solution to flexible processing of queries with

preferences.

II. THE PROPOSED SYSTEM

PrefDB is a prototype system that is based on the

preference and extended relational data and query

models that we presented earlier. Section 2 provides an

overview of its functionality and architecture and also

describes the implementation of p-relations and the

operators. Query processing in PrefDB Figure 2 depicts

the system’s architecture. Modules depicted in yellow

are provided by the native DBMS, whereas the blue-

colored ones are those developed for PrefDB. As

shown, PrefDB offers two alternative query options:

preferences can be provided along with the input query

or the system can enrich a non-preferential query with

related preferences. In the first query option,

preferences are specified in a declarative way,

additionally to the standard SQL query part. In the

second case, relevant preferences are provided by the

profile manager module, which accesses user

preferences stored in the database. Stored preferences

can be collected from user ratings or by analyzing past

queries or clickthrough data [7]. Since preference

collection is orthogonal to query processing, which is

the primary goal of PrefDB, in our implementation, we

simply store preferences specified by users through a

visual tool we have developed [7] as well as

preferences specified in past Query Parser Query +

Preferences Query Optimizer Extended Query Plan

SQL Execution Engine Database Engine Scoring,

aggregate functions Data Operators σ, π, λ, Optimized

Query Plan Profile manager Query + Preferences user

queries. For both query options, the query and the

preferences are given as input to the query parser.

Apart from the core PrefDB query processing strategies

that blend preference evaluation into query processing,

we have also implemented a set of plug-in methods,

which are described in the Appendix. Below is an

overview of the core PrefDB modules

Figure 1. System Architecture

 The profile manager selects from the database

preferences that can be combined with the

conditions of the issued query. For this purpose, we

use the preference selection algorithm proposed in

[20]

 The query parser takes as input the query and

preferences and generates an extended query plan

that is passed to the PrefDB query optimizer.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 753

 The query optimizer improves the input plan by

applying a set of algebraic rules. This improved

plan and a cost model for preference evaluation are

used for generating alternative plans that interleave

preference evaluation and query processing in

different ways and for picking the plan with the

cheapest estimated cost.

 The execution engine realizes the execution of the

query plan selected by the query optimizer using

one of our execution methods. We discuss

III. RELATED WORK

The concept of preference-aware query processing

appears in many applications, where there is a matter of

choice among alternatives, including query

personalization [10], [18], [20], recommendations [4]

and multi-criteria decision making [9], [13]. We

discuss prior work with respect to how preferences are

represented in the context of relational data and how

they are integrated and processed in queries. In

representing preferences, there are two approaches. In

the qualitative approach, preferences are specified

using binary predicates called preference relations [5],

[10], [18]. In quantitative approaches, preferences are

expressed as scores assigned to tuples [6], [23] be

specified based on any combination of scores,

confidences and context. Our framework allows us to

process in a uniform way all these different query and

preference types. In terms of preference integration and

processing, one approach is to translate preferences into

conventional queries and execute them over the DBMS

[14], [19], [20], [21], [24]. Several efficient algorithms

have been proposed for processing different types of

queries, including top-k queries [13] and skylines [9].

These algorithms as well as query translation methods

are typically implemented outside the DBMS. Thus,

they can only apply coarse grained query optimizations,

such as reducing the number of queries sent to the

DBMS. Further, as we will also demonstrate

experimentally plug-in methods do not scale well when

faced with multi-join queries or queries involving many

preferences. Native implementations modify the

database engine by adding specific physical operators

and algorithms. RankSQL [23] extends the relational

algebra with a new operator called rank that enables

pipelining and hence optimizing top-k queries. Another

example of operator is the winnow operator [10], which

selects all tuples corresponding to the Pareto optimal

set. Our approach is different from existing works in

several ways. First, existing techniques are limited to a

particular type of query. In contrast to these approaches,

we consider preference evaluation (how preferences are

evaluated on data) and selection of the preferred tuples

that will comprise the query answer as two operations.

We focus on preference evaluation as a single operator

that can be combined with other operators and we use

its algebraic properties in order to develop generic

query optimization and processing techniques. Finally,

we follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. Once these rules are specified a new

operator can be used inside queries. It is worth noting

that both FlexPref and our work are motivated by the

limitations of plug-in and native approaches. FlexPref

approaches the problem from an extensibility

viewpoint. Our focus is on the problem of preference

evaluation as an operator that is separate from the

selection of preferred answers, and we study how this

operator can be integrated into query processing in an

effective yet not obtrusive to the database engine way.

IV. PROPOSED METHODOLOGY

In this paper, we first construct an extended query plan

that contains all operators that comprise a query and we

optimize it. Then, for processing the optimized query

plan, our general strategy is to blend query execution

with preference evaluation and leverage the native

query engine to process parts of the query that do not

involve a prefer operator. Given a query with

preferences, the goal of query optimization is to

minimize the cost related with preference evaluation.

Based on the algebraic properties of prefer, we apply a

set of heuristic rules aiming to minimize the number of

tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization

approach. Using the output plan of the first step as a

skeleton and a cost model for preference evaluation, the

query optimizer calculates the costs of alternative plans

that interleave preference evaluation and query

processing in different ways. Two plan enumeration

methods, i. e ., a dynamic programming and a greedy

algorithm are proposed. For executing an optimized

query plan with preferences, we describe an improved

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 754

version of our processing algorithm (GBU) (an earlier

version is described in. The improved algorithm uses

the native query engine in a more efficient way by

better grouping operators together and by reducing the

out-of-the-engine query processing.

Modules:

Registration & Interest Sum up

Query Formation

Query Optimization & Execution

A preferential query combines p-relations, extended

relational and prefer operators and returns a set of

tuples that satisfy the boolean query conditions along

with their score and confidence values that have been

calculated after evaluating all prefer operators on the

corresponding relations. Intuitively, the better a tuple

matches preferences and the more (or more confident)

preferences it satisfies, the higher its final score and

confidence will be, respectively. The query parser adds

a prefer operator for each preference. Finally, the query

parser checks for each preference, whether it involves

an attribute (either in the conditional or the scoring part)

that does not appear in the query and modifies project

operators, such that these attributes will be projected as

well. proportional to the number of tuples flowing

through the operators in the query plan. Assuming a

fixed position for the other operators, the goal of our

query optimizer is essentially to place the prefer

operators inside the plan, such that the number of

tuples flowing through the score tables is minimized.

The execution engine of PrefDB is responsible for

processing a preferential query and supports various

algorithms. Another example of operator is the winnow

operator [10], which selects all tuples corresponding to

the Pareto optimal set. Our approach is different from

existing works in several ways. First, existing

techniques are limited to a particular type of query. In

contrast to these approaches, we consider preference

evaluation (how preferences are evaluated on data) and

selection of the preferred tuples that will comprise the

query answer as two operations. We focus on

preference evaluation as a single operator that can be

combined with other operators and we use its algebraic

properties in order to develop generic query

optimization and processing techniques. Finally, we

follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. essentially to place the prefer

operators inside the plan, such that the number of

tuples flowing through the score tables is minimized.

The execution engine of PrefDB is responsible for

processing a preferential query and supports various

algorithms. Another example of operator is the winnow

operator [10], which selects all tuples corresponding to

the Pareto optimal set. Our approach is different from

existing works in several ways. First, existing

techniques are limited to a particular type of query. In

contrast to these approaches, we consider preference

evaluation (how preferences are evaluated on data) and

selection of the preferred tuples that will comprise the

query answer as two operations. We focus on

preference evaluation as a single operator that can be

combined with other operators and we use Once these

rules are specified a new operator can be used inside

queries. It is worth noting that both FlexPref and our

work are motivated by the limitations of plug-in and

native approaches. FlexPref approaches the problem

from an extensibility viewpoint.

V. EXPERIMENTAL RESULTS

The proposed system is implemented on an Intel core

i5 processor system running at 2. 20 GHz, 3GB RAM

using Java and Ulteo OVD virtual desktop for

building cloud environment. The implemented system

consists of 5 modules: User registration, encrypt and

upload, file sharing, decrypt and download and

verification auditing.

1. UserRegistration:

The registration function allows users to create

secure account. Here the user enters his/her

information necessary for signing up like user's name,

password, mobile no and email-address. The

validations and required fields are effectively

handled. Each user will be provided his/her own

space on cloud.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 755

Figure 2. Verification Inspection

2. Encrypt and Upload

After registering, the user may login into the system.

Every user is provided space on cloud where they may

upload their files. The encrypt function will encrypt the

data files of users before storing them on cloud storage

using ElGamal cryptosystem. The owner will

generate secrete hash key using SHA-256 and secrete

key to download the uploaded file. The secret hash key

is further mailed to TPA for data integrity verification.

The time required to encrypt the files using ElGamal is

also recorded.

3. File Sharing

The data owner may share the outsourced files with

other users in cloud using the share module. The secret

key generated during encryption is also mailed to the

shared user in order to grant them access to the shared

file. The shared user may download the file, make

changes and again upload the file. In such a case, TPA

informs the original data owner of that file about the

latest modifications done by a shared user. Every user is

provided space on cloud where they may upload their

files. The encrypt function will encrypt the data files of

users before storing them on cloud storage using

ElGamal cryptosystem. The owner will generate

secrete hash key using SHA-256 and secrete key to

download the uploaded file. The secret hash key is

further mailed to TPA for data integrity verification.

The time required to encrypt the files using ElGamal is

also recorded.

4. Decrypt and Download:

The data owner or a shared user may need to

download the file. Since the data files stored on cloud

server are in encrypted form, decryption must be

performed before downloading the file. Initially, the

system validates whether the user requesting to

download the file is a Legitimate user by demanding

the secret key from that user. The decryption module

then performs data decryption using both RSA and

ElGamal decryption scheme and downloads the data

using secret key sent by the data owner. The time

required to decrypt the file is also recorded. The data

owner may share the outsourced files with other users

in cloud using the share module. The secret key

generated during encryption is also mailed to the

shared user in order to grant them access to the shared

file. The shared user may download the file, make

changes and again upload the file. In such a case, TPA

informs the original data owner of that file about the

latest modifications done by a shared user. Every user is

provided space on cloud where they may upload their

files. The encrypt function will encrypt the data files of

users before storing them on cloud storage using

ElGamal cryptosystem. The owner will generate

secrete hash key using SHA-256 and secrete key to

download the uploaded file.

5. Verification Auditing

In order to authenticate the integrity of the user’s

uploaded data, the TPA is granted access to the system.

The TPA validates the integrity of the cloud data files

on remote server on behalf of cloud user itself. TPA

verifies the legitimacy of data using secret hash key

sent by the cloud user. If the secret hash key matches

with hash key in the cloud server, the verification

proves to be successful, thus implying that the data

files has not been modified. However, if the verification

is unsuccessful, an email is dispatched to the data

owner of the file informing about the last modifications

done to his file.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 756

Figure 3. Cloud Users’ Home Page

Figure 4. File Sharing and Downloading

VI.CONCLUSION

To authenticate the integrity of data uploaded on cloud

server, it is significant to permit a third party auditor to

assess the quality of data content outsourced on

cloud server. Public auditing system permits the clients

to allocate the data integrity authentication tasks to a

third party as they themselves can be unstable or may

not possess essential computational resources to

perform periodic integrity verifications. However,

delegating data integrity verification task to a third

party (TPA) raises privacy issues since the TPA may

derive the actual data content from server during

verification process.

Thus the proposed system uses public auditing

scheme for data storage security on cloud while

protecting the confidentiality of the user’s data.

ElGamal encryption along with SHA-256 hash

algorithm are used to make sure that the TPA should

not get access to the outsourced data on the cloud

server while performing integrity check thereby

increasing the effectiveness of the auditing process.

This eliminates the overhead of performing auditing

task from the client and also lessens the cloud users’

concern that their uploaded data may be accessed by an

untrusted organization or individual.

TABLE I: Comparative analysis of encryption

time.

TABLE 2: Comparative analysis of decryption

time

VII. REFERENCES

[1]. Giuseppe Ateniese, "Provable Data Possession at

Untrusted Stores", Proc. of ACM Conference on

Computer and Comm. Security (CCS), 2007.

[2]. Ari Juels and Burton S. Kaliski Jr, "Pors: Proofs

of Retrievability for Large Files", Proc. of ACM

Conference on Computer and Comm. Security

(CCS), pp. 584-597, 2007.

[3]. Hovav Shacham and Brent Waters, "Compact

Proofs of Retrievability, " International Conf. on

Theory and Application of Cryptology and

Information Security: Advances in Cryptology,

pp. 90-107, 2008.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 757

[4]. Giuseppe Ateniese, "Scalable and Efficient

Provable Data Possession", International Conf.

on Security and Privacy in Comm. Networks

(SecureComm), 2008.

[5]. C. Chris Erway, Alptekin Kupcu, Charalampos

Papamanthou, Roberto Tamassia, "Dynamic

Provable Data Possession", ACM International

Conf. on Computer and Comm. Security (CCS),

2009.

[6]. Qian Wang, Cong Wang, Kui Ren, Wenjing Lou

and Jin Li, "Enabling Public Auditability and

Data Dynamics for Storage Security in Cloud

Computing", IEEE Transaction on Parallel and

Distributed System, vol. 22, no. 5, pp. 847 859,

2011.

[7]. Cong Wang, S. M. Chow, Qian Wang, Kui Ren

and Wenjing Lou, "Privacy-Preserving Public

Auditing for Secure Cloud Storage", IEEE

Transaction on Computers, Vol. 62, no. 2, 2013.

[8]. Sarah Shaikh, Deepali Vora, "Review of Privacy

Preserving Auditing Techniques", International

Journal of Computer Applications (0975- 887),

Volume 145 No. 13, July 2016.

[9]. T S Khatri, G B Jethava "Improving Dynamic

Data Integrity Verification in Cloud Computing",

4th IEEE ICCCNT 2013.

[10]. S. V. Baghel, D. P. Theng " A Survey for Secure

Communication of Cloud Third Party

Authenticator ", 2nd International Conference on

Electronics and Communication Systems, IEEE

ICECS ‘2015.

[11]. ElGamal Cryptosystem, http://lxmayr1.

informatik. tu- muenchen.

de/konferenzen/Jass05/courses/1/papers/meier_p

aper. pdf

