
CSEIT1722239 | Received : 01 April 2017 | Accepted : 14 April 2017 | March-April-2017 [(2)2: 784-788 ] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307 

 

784 

Query Engine Design and Performance Analysis : A Review 
Chemwotie Kipkurui Brian 

Department of Computing, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

 

ABSTRACT 
 

Distributed real-time computing has been the domain of practical system engineering for many decades. The 

development of a discipline of real-time programming would allow the construction of programs with analysable 

and variable timing properties. Such a discipline will need to be built on a well-integrated framework in which 

different methods are used where appropriate to obtain timing properties to which a high-level assurance can be 

attached. Time is everything in this current system, everything fast will gain the most valuable achievements 

especially in the business field. Whoever tries to get the first opportunity to fulfil the market needs will gain most 

profit. This paper looks into the various query engine models and frameworks that tries to improve on both the 

design and performance.  
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I. INTRODUCTION 

 
We will find many real time systems around us. Their 

field of implementation range from small to large-scale 

use, like for instance industrial use or the military. 

Most of these applications are also safety critical 

systems that need to be reliable therefore; we need a 

reliable and fault-tolerant distributed real-time 

computation system. Real-time computing is any 

information processing system, which has to respond to 

externally generated input stimulated within a finite 

and specified period. We can also define a real-time 

system as a processing system that processes any 

information and generates output within a specified 

time. Storm is an example of a distributed real-time 

data processing system, which guarantees that the 

system will continue to operate properly in failure state, 

and all incoming data will be processed [1].  

 

There has been other notable distributed real-time 

systems including S4 [2], MillWheel [3], Samza [4], 

Spark Streaming [5] and Druid [6].With many 

distributed real-times computation, there are some 

requirements of real-time processing which are 

becoming standard for distributed real-time 

computation systems. For supporting analysis in real-

time computation, querying is one of the most used 

tools.  

II.  QUERY OPTIMIZATION STRATEGIES 

 

A. Iterative Dynamic Programming (IDP) 

 

Kossman [7] proposed the use of iterative dynamic 

programming in place of dynamic programming. He 

argues that IDP is able to produce as good plans as 

dynamic programming if there are enough resources 

available, and IDP is, in addition, able to adapt in cases 

where there are not enough resources available or the 

query is too complex for dynamic programming. 

 

B. Randomized optimization 

 

Query optimization for relational database systems is a 

combinatorial optimization problem, which makes 

exhaustive search unacceptable as the query size grows. 

Randomized algorithms, such as Simulated Annealing 

(SA) and Iterative Improvement (II), are viable 

alternatives to exhaustive search. Ioannidis et al [8] 

adapted these algorithms to the optimization of project-

select-join queries. The author tested them on large 

queries of various types with different databases, 

concluding that in most cases SA identifies a lower cost 

access plan than II.  
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C. Dynamic Approach 

 

Although. Query optimization is the most critical phase 

in query processing. Hameurlain et al [9] tries to 

describe synthetically the evolution of query 

optimization methods from uniprocessor relational 

database systems to data Grid systems through parallel, 

distributed and data integration systems. The author 

points out a set of parameters to characterize and 

compare query optimization methods, mainly: size of 

the search space, type of method (static or dynamic), 

modification types of execution plans (re-optimization 

or re-scheduling), level of modification (intra-operator 

and/or inter-operator), type of event (estimation errors, 

delay, user preferences), and nature of decision making 

(centralized or decentralized control). 

 

D. Static Approach 

 

Although. Query optimization is the most critical phase 

in query processing 

 

III.  OTIMIZING QUERY PRACTICE 
 

The following systems are set practices of query 

optimization on existing systems. The practices have 

been tested and proven on different systems and all the 

results recorded and published. 

A. JAQL 

 

JAQL is a part system of IBM Big insights to analyze 

large semi structured datasets in parallel using 

Hadoop’s Map Reduce framework [10]. It has some 

common features with other data processing languages. 

JAQL was also developed for scale-out framework 

architecture such as Pig [11], Hive [12] and 

DryadLINQ [13].JAQL developed methods that are 

also implementable in other scale-out framework 

architectures that have been listed above with some 

minor modification. JAQL components consists of a 

declarative scripting language, a compiler and a 

runtime. JAQL contains a scripting language, a 

compiler and hadoop's runtime components. 

 

For querying language, JAQL evaluates statements, 

which are either expressions or assignments. The 

system in JAQL has an input to produce an output that 

can feed another expression as input. All of the 

aggregate functions such filter, join and group by are 

supported by JAQL. A user can also submit the SQL 

query that will be translated to JAQL system. Java and 

the other languages are also supported by JAQL. 

  

For JAQL's compiler, It’s designed as a heuristics-base 

rewrite engine which optimize input scripts applying a 

set of transformation rules. JAQL will simplify 

expression to lower level operators so it can be 

executed by this. Map Reduce framework will evaluate 

an expression that has been transformed to map reduce 

function. This rule is the most important rules of JAQL. 

In the distributed computation, the interpreters 

evaluates the script locally on the nodes that does the 

compilation of the script. In order to do parallel 

execution, JAQL will spawns interpreters to remote 

nodes using Map Reduce function. 

B. JQL 

JQL [14] is a java's extension which has a capability 

for querying the collection of objects. This means the 

query is applicable on objects in class collections of the 

system and usable for expressions checking of specific 

instances types at run-time. 

The query engine is allowed by query to run the 

implementation detail task with abstraction which 

provided by JQL for handling sets of object, thus the 

code will be smaller and with permission the query 

valuator can make a dynamical decision even though 

the situation keep changing at run time. In program 

language, run-time execution can be improve by the 

query optimization strategies, which is come from 

database domain. They main concept is do the query 

optimization task at compile-time as many as we can.  

Histograms is used by the technique to estimate the 

selection of join and predicates in a query. The order of 

query joins and predicates will be ordered according to 

that estimation. After this technique obtained the plan 

for query at compile-time, the plan is going to be 

compiled at run-time. The estimation of errors rate and 

split merger algorithms are suitable and efficient to 

maintain the histogram accurately, this is showed by 

the experimental results which has been done before. 

 

IV.REAL-TIME PROCESSING FRAMEWORK 
 

Real-time processing network has become a new trend 

in the last couple of years. Most organizations are 

pursuing implementation of real-time processing 

systems. With this technology, they want to achieve 
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what they could not before, real-time analysis to 

facilitate real-time decision-making.  

A. Spark Streaming 

Spark is an open-source distributed computing 

framework that runs on a computer cluster. Spark uses 

a dubbed Resilient Distributed Datasets (RDD) for 

repeated query [15] and stored cache datasets in 

memory. Spark's performance is much faster than 

Hadoop map reduce which is around 100 times faster 

for iterative machine application [16]. Spark streaming 

is a streaming computation as a series of a very small 

and deterministic batch jobs [17]. 

 

 
 

Figure 1.  Spark Streaming Process 

 

These are Spark streaming concepts: 

 

1. Dividing live stream into several batches of X 

seconds. 

2. Spark assume each batch of data as RDDs and does 

the process by using RDD operations. 

3. At the end, RDD operation’s results are returned in 

batches. 

B. Spark SQL (Shark) 

Shark is system that analyze data and an extension of 

Spark distributed computing framework [18]. This 

system is combining SQL queries with Spark analytic 

function at scale and also has a recovery-recovery for 

query. Shark is able to execute SQL quires faster 

enough at 100 times than apache hive and Hadoop in 

machine learning programs. Shark implemented a 

column-oriented in memory for storage and dynamic 

strategies for the preplanning mid-query in order to 

effectively execute the SQL statement. 

 

C. Storm 

A distributed real-time computation framework which 

has a capability to process data in the unbounded 

streams form [19]. Strom does the same thing with 

Hadoop except Storm does the real-time processing 

while Hadoop is a batch processing. Queuing and 

database technologies are also supported by Storm 

framework. Streams of data are fed to Storm topology 

and Storm process those streams in the very random 

complex ways, stream repartition between each stage of 

computation is need. Storm support multi-languages 

(ruby, python, java script, Perl, and PHP). Storm 

architecture is presented by three nodes which have 

different functionality. 

 
Figure 2 Storm Architecture 

a) Nimbus node  

Nimbus [20] is a master node that will do the assigning 

tasks to supervisor nodes, monitoring failures in the 

cluster and distributing code to be executed around the 

cluster. Nimbus node is also responsible for monitoring 

all of the computation and reallocating workers. 

b) ZooKeeper 

Distributed configuration, synchronized service and 

naming registry for Storm cluster, Zookeeper [21] 

responsible for storing all of nimbus and supervisor 

state in the Znode or in the local disk. 

c) Supervisor nodes 

Listening and Receiving all distributed task that have 

been assigned by the nimbus node. Supervisor is able 

to start/stop the worker processes if necessary. Each 

Worker in the supervisor nodes will executed a part of 

the topology, while in Hadoop it called TaskTracker. 

D. Storm Trident 

Trident [14] is a Storm's extension which provides a 

simple and easier framework for distributed real-time 

big data analytics framework. Storm trident is also 

developed by Twitter. 

 

One of the Twitter's biggest problem is to keep the 

statistics of how many tweets and tweeted URLs which 

get retweeted by some millions of followers. Image a 

famous person whose tweets a URL and has a millions 
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of followers. Many of his/her followers will do the 

retweet. Thus how to calculate how many people in 

tweeter have seen or read the URL? This function 

called "Top retweet Url's". This feature will display 

which one is the most tweeted in real-time. 

 

The one and only solution was apache Storm, but with 

the extension of Trident. Managing this kind of features 

will became easier with the present of Storm trident. 

Trident does the simplification for Storm. In the 

traditional ways of Storm, we must configure a number 

of Spouts, Bolts and also manage the configuration 

how the tuple is distributed, which grouping we will 

use. Tridents exists a lot of feature that will do the 

complicated part. Trident has four operations that have 

a different functionality. 

1. The local operation will apply to each of partition 

and there is no need to do network transfer. 

2. The operation will be distributed which will cause 

the stream also being distributed. In this operation, 

network transfer is involved. 

3. Operation for aggregate function which will need a 

network transfer as part of the operation.  

4. Merges and joins. 

 

The fact that using in-memory state as a storing system 

in Bolt doesn’t has fault-recovery or in other word is 

fault-tolerant. The process in dying nodes will get 

reassigned by nimbus node while the state can’t be 

retrieved. Although we can use a ticket that has been 

provided, the thoughtful way is to preserve to a reliable 

database which is the reason why trident is useful if we 

need to save the state. Trident does the pre-batch 

processing to lighten our data store with only one 

update for each message. Trident also provides an 

aggregation API. 

 

Although Trident can be used to simplify complex 

algorithms computation, we must learn how to use 

trident and use its own function that need to be learned. 

The other framework which is Spark streaming already 

provide SQL integration with its system which called 

Shark. Strom has extension for trident while having no 

SQL engine query. 

E. Spark and Storm Comparison 

Although the fact that Storm and Spark streaming are 

distributed real-time processing, there are several 

differences that will separate them. Storm and Spark 

streaming will be compared side-by side and the table 

below will present their differences. 

 
 Spark Storm 

Origin BackType, 

Twitter 

UC 

Berkeley 

Implemented in Scala Clojure 

API language PHP , Java , 

Pyhton  

Java, Scala 

Processing 

Model,  

Arriving 

events is 

batched up in 

the period of 

shoet time 

window before 

the stream is 

processed 

The 

incoming 

event will 

be process 

in a real-

time. There 

is no 

waiting 

time for 

execution. 

Latency Few seconds Sub second 

Fault 

Tolerance, 

Data 

Guarantees 

Has a fault-

recovery and 

statefull 

computation 

Storm will 

guarantee 

that the 

each record 

is processed 

once or 

more. 

Storm also 

allows 

duplicating 

during the 

fault-

recovery. 

This will 

means there 

is possible 

mutable 

state due to 

two 

incorrect 

updates. 

Hadoop 

distribution  

HDP , 

HortonWorks 

MapR, 

Cloudera 

 

V. CONCLUSION 
 

All sections described above are related to this research 

that we have specially selected. There are several 

frameworks that have been implemented in a 

distributed system for real-time computation. Apache 

Storm and Spark are two of many real-time distributed 

computation framework that already exist that have 

gained popularity for its performance for real-time 

computation.  In this paper, we have majorly focused 
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on Storm and spark engines. Storm has a non-SQL 

extension called trident whereas Spark have been 

implemented SQL query engine in their system. SQL is 

a generic and most used language for queries, with the 

absence of SQL extension. We have then looked into 

the differences between the spark and storm engines.  
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