
CSEIT1722242 | Received : 07 April 2017 | Accepted : 06 May 2017 | May-June-2017 [(2)3: 273-277]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

273

Prioritization on Software Reliability Assessment using

Adaptive Testing Strategy
Dr. P. Maragathavalli, A.Saranya

Department of Information Technology, Pondicherry Engineering College, Pillaichavadi, Puducherry, Tamil Nadu,

India

ABSTRACT

Regression testing assures changed programs against spontaneous improvement. Rearranging the execution order of

test cases is a key idea to improve their effectiveness. Many test case prioritization techniques determine test cases

using the random selection appear, and yet random ordering of test cases has been considered as ineffective.

Adaptive random testing (ART) is a talented aspirant that may deputy random testing (RT). Coverage-based ART

techniques are statistically better than Random testing in detecting faults. ART prioritization techniques used for

coverage-based prioritization to reduce time consumption.

Keywords : Adaptive Random Testing; Test Case Prioritization

I. INTRODUCTION

Regression testing is an important and however time

consuming software development activity. It executes

and test suite (T) on a changed program (P) to assure

that the program is not harmfully affected by

unintended modification. For instance, the retest-all

strategy executes all available test cases. Test suites can

be large and conduct regression tests is monotonous.

To address this difficulty, existing research studies

consider different magnitude to make regression testing

more feasible to software development. Techniques

may execute a subset of T on P, remove some test cases

from T enduringly, assign the execution priority of the

test cases in T, or use a combination of these Test case

selection and diminution may not execute P over

certain test cases of T. Although either strategy can

make regression testing faster to absolute, the fault

detection ability of T is generally compromise. Test

case prioritization reorders T for execution to maximize

a chosen testing goal. Maximizing the code coverage

rate on a given version of the software or business-

oriented (e.g., minimizing early human participation in

the testing phase). Test case prioritization does not

reject any test case, and hence the fault detection ability

of T is not compromised. Suppose T = {t1, t2, …, tn} is

a regression test suite with n test cases. A test sequence

S is an ordered set of test, S=s1, s2, …, sk cases.

Furthermore, the notation T⁄S=s1, s2, …, sk, to be to

represent the maximal subset of T whose elements are

not in S. Without loss of generality, assume the larger

such a number, the better S satisfies G. When discuss

test case prioritization techniques, discriminate two

cases, general prioritization and version specific

prioritization. The previous aims at selecting a test case

ordering that will be effective (on average) over a

sequence of consequent versions of the software. It is

particularly applicable when the code bases of

consequent versions are unavailable at the time of test

case prioritization.

Greedy algorithms [3] are a class of coverage-based

test case prioritization techniques. Examples include

the total-statement coverage technique and the

additional-statement coverage technique. Suppose T is

the given failure test suite and a test sequence S has

been selected using a technique in this class. Such a

technique pick t’ from T/S as the next test case to add

to S yields the maximum value in appraisal goal. The

additional-statement prioritization technique the

coverage information of the enduring test cases when

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 274

none of them improves the coverage of the test cases

already selected.

Although g is no longer a monotonic function, for each

round of selection of new test cases, g could still be

used as if it were monotonic. In any case, the

―collective‖ adoption of random selection to resolve

test cases remains unchanged.

(i) It recommends the first set of coverage-based ART

techniques for test case prioritization.

(ii) It reports the first experiential study on ART-based

prioritization techniques.

The results show that techniques are better to random

ordering in terms of earlier detection of failures. One of

the studied ART prioritization Fig1techniques is

statistically akin to the best-studied coverage-based

prioritization techniques in terms of the fault detection

rate, and is much more efficient.

Adaptive Random Testing (ART) [1], which is a

challenge to improve the failure-detection effectiveness

of random testing. ART is based on various

experimental observations showing that many program

faults result in failures in proximate areas of the input

domain, known as failure patterns. ART analytically

guides, or sieve, randomly generated candidates, to take

advantage of the likely attendance of such patterns.

Figure 1. Adaptive Random Testing

II. ADAPTIVE RANDOM TESTING

If contiguous failure regions are indeed common, it

would propose that one way to progress the failure

detection effectiveness of random testing is to

someway taking advantage of this confrontation. One

consequence of the existence of contiguous failure

regions is that ―non-failure regions‖, that is,

constituency of the input domain where the software

produces outputs according to specification, will also

be proximate.

Therefore, given a set of previously executed test cases

that have not exposed any failures, new test cases

located away from these old ones are more likely to

expose failures in other words; test cases should be

more evenly spread during the input domain. Based on

this intuition, Adaptive Random Testing (ART) was

developed to improve the failure-detection

effectiveness of random testing. The first ART method

proposed, the Fixed Size Candidate Set ART algorithm

(FSCS-ART) [4] candidates are randomly generated.

For each candidate ci, the closest previously executed

test is located, and the distance di is determined. The

aspirant with the largest di is selected, and the other

candidates are discarded.

The process is repeated until the desired stopping

criterion, be it the tiredness of testing resources or the

detection of enough fail is reached. To assess the

effectiveness of the FSCS-ART method, the failure

detection effectiveness of FSCS-ART to random

testing that is, testing by uniform random sampling

with replacement on a sample of 12 error-seeded

statistical programs.

The original, unmodified programs were used as a

testing the correctness of the outputs. The statistic used

to compare the methods was the average number of

tests required to distinguish the first failure, which is

commonly known as the F-measure. In most cases, the

F-measure of FSCS-ART was 30–50% lower than that

of random testing.

A randomly generated input will be used as the next

test case if it lies outside all prohibiting regions;

otherwise it will be remaining and the process will be

repeated. The efficiency of RRT is very analogous to

that of FSCS-ART.

ART by Partitioning uses a rather different perception

— in essence, that partitioning the input domain, and

allocating test cases evenly to partitions, will achieve

even spread. The advantage of failure region contiguity,

but using various other intuitions to achieve the ―even

distribution‖ of test cases, includes Quasi-Random

Testing.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 275

Figure 2. Fixed Size Candidate Set operation

A. Test Case Prioritization Strategies

Test case prioritization test cases so that those with the

higher priority, according to some criterion, are

executed earlier in the regression testing process. Given

a test suite, test case prioritization will find a

permutation [6] of the ingenious test suite, aiming to

maximize the objective function. There are various

strategies based on different intuitions. For example,

history-based prioritization techniques use information

from prior to executions to determine test priorities;

knowledge-based techniques use human knowledge to

determine test priorities and model-based techniques

use a model of the system to determine test priorities.

B. Adaptive Random Sequence

ART is aimed to improve the fault-detection

effectiveness of random testing through the concept of

even distribution of test cases in the input domain. It is

motivated by the experimental observation that failure-

causing inputs are frequently clustered [7] into

contiguous failure regions. In other words, if a test case

is established to be non-failure-causing, it is very likely

that its neighbors will not divulge any failures. Thus,

preference should be given to select the contribution far

away from the non-failure causing inputs as the

subsequently test case. ART can be implemented using

various notions of even spread, such as Fixed Size

Candidate Set ART (FSCS-ART), constrained random

testing, ART by dynamic partitioning, [5] lattice-based

ART, and so on. In order to reduce the generation

overhead for these algorithms, some general diminution

techniques have been developed, such as clustering,

mirroring, and forgetting. Since its initiation, ART has

been applied into many different types of programs.

III. EXISTING WORK

Test case prioritization schedules test cases with an

objective to achieve some performance goal. Various

test case prioritization techniques have been proposed

using different perception. Among these techniques,

execution information acquired in previous test runs to

define test case priority and they defined various

techniques. Their techniques are shown to be effective

at achieving higher values for APFD. Furthermore,

several non-greedy algorithms, including hill climbing

algorithm and genetic algorithm. Obviously, all of

these prioritizations require the test history information

of the previous versions. Test case prioritization by

ARS uses code coverage. They used Jaccard space and

Manhattan distance respectively, to measure the

dissimilarity of code exposure. The experimental

results showed that they are statistically superior to the

random sequence in detecting faults. ART to prioritize

test cases based on effecting frequency profiles using

frequency Manhattan distance.

A similarity-based test case prioritization technique

based on farthest-first regimented progression, which is

similar to adaptive random testing. However, these

white-box methods presume the availability of certain

coverage information or execution frequency profiles.

Prioritization technique used string distances to

measure the test case diversity, and hence solely

depended on the black-box information. However, their

algorithm computes the distances for each pair off of

test cases to find the first test case with the utmost

distance, and then it repeatedly chooses a test case

which is most distant from the set of already ordered

test cases. Therefore, their prioritized test sequence is

deterministic but acquires pricey overhead. Majority of

the endure test case prioritization techniques are

applied offline. That is, after the prioritization is

finished, the test case progression is finalized, and then

the regression testing is behavior according to the

prioritized test cases until testing resources exhaust.

The comparison of existing work is given in table 1

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 276

Table 1. Comparison of Existing Work

S.

No

Author Title Approach Application Disadvantage

1 Salfner, F. and

Malek

Using hidden semi-

Markov models for

effective online

failure prediction.

Failures modeled

as

non-stationary

Bernoulli

process

Software

reliability

prediction

Adapts to changing

system

Dynamics

2 Liang, Y., Zhang,

Y., Siva

subramaniam, A.,

Jette, M., and

Sahoo

Failure analysis and

prediction models.
Temporal / spatial

compression of

failures

Extreme-scale

parallel systems

Focus on long-

running

Applications

3 Hoffmann, G. A.

and Malek, M.

Call availability

prediction in a

telecommunication

System: A data

driven empirical

approach.

Approximation of

interval call

availability

by universal basis

functions

Performance

failures of a

telecommunicatio

n

system

Also applied to

response

time and memory

prediction in

Apache

web server

4 Fu, S. and Xu, C.-

Z

Quantifying

temporal and spatial

fault event

correlation for

proactive Failure

management.

Estimation of

number of

failures from CPU

utilization and

temporal

and spatial

correlation

by use of neural

networks

Failures of Wayne

computing grid

Focus on number of

Failures

5 Abraham

and Grosan

Genetic

programming

approach for fault

modeling.

.

Genetically

generating

code to

approximate

failure probability

as a

function of

external

stressors (e.g.

temperature)

Power circuit

failures of an

electronic device

Applicable to

systems

where the root cause

of

failures can be

assigned to

a small set of

stressors

6 Meng, H., Di Hou,

Y., and Chen, Y.

A rough wavelet

network model with

genetic algorithm

and its application to

aging forecasting of

application server

Rough set wavelet

network to predict

next

monitoring value

Memoryconsumpt

ion

One step ahead

prediction

 lead-time equal to

monitoring interval

7 Salfner and

Malek

Prediction-based

software availability

Enhancement

Model error report

sequences using

hidden

semi-Markov

models

(HSMM)

Performance

failures of a

telecommunicatio

n

system

Includes both type

and

time of error

reports, can

handle permutations

in

event sequences

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 277

IV.CONCLUSION

Adaptive random testing combines random candidate

selection with a filtering process to encourage an even

spread of test cases throughout the input domain. Based

on pragmatic observations that contiguous failure

regions are common, tentative studies have shown that

ART can detect failures test cases than random testing.

In fact, ART methods accomplish close to the

hypothetical maximum test case effectiveness by any

possible testing method using the same in sequence.

Early work on ART strenuous mainly on numeric input

domains. As such, we hope that it represents an

effective, efficient alternative to random testing in

many applications. The Adaptive Random testing is a

promising, general method of incremental ordering.

The success of ART illustrates the prospective of the

approach of failure-based testing, and the brunt and

importance that assortment has on the effectiveness of

test suites. ART overlay the way for a more rigorous

and systematic analysis of the relationships between the

in sequence available to the software tester and the

effectiveness of families of testing strategies bequest to

the foundations of software testing.

V. REFERENCES

[1]. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and

V. Zumer, ―Adapting control parameters in

differential evolution: A comparative study on

numerical benchmark problems,‖ IEEE

Transactions on Evolutionary Computer, Vol. 10,

No. 6, Dec 2016, pp. 646–657.

[2]. Junpeng Lv, Bei-Bei Yin, and Kai-Yuan Cai,―On

The Asymptotic Behavior of Adaptive Testing‖,

IEEE Transactions on Software Engineering,

Vol. 40, No. 4, Apr 2014, pp. 396-412.

[3]. Junpeng Lv, Bei-Bei Yin, and Kai-Yuan Cai,

―Estimating confidence interval of software

reliability with adaptive testing strategy‖, Journal

Systems Software, Vol. 97, Oct. 2014, pp. 192–

206.

[4]. Musa, J. D.: ―Operational Profiles in Software-

Reliability Engineering,‖ IEEE Software

Engineering, Vol. No. 2, 2010, pp. 14-32.

[5]. S. Paterlini and T. Krink,―High performance

clustering with differential evolution,‖ IEEE

Congress on Evolutionary Computation, Vol. 2,

2014, pp. 204–201.

[6]. Chen, T, Kuo, F, Liu, H and Wong, E, ―Code

coverage of adaptive random testing,‖ IEEE

Transactions on Reliability, Vol. 62, No. 1, 2013,

pp. 226-237.

[7]. T. Y. Chen, F.-C. Kuo, R. Merkel, and T. H. Tse.

―Adaptive random testing: The ART of test case

diversity‖, Journal of Systems and Software,

2010, pp.60-66.

[8]. Andrea Arcuri, Member, IEEE, and Lionel

Briand, Fellow, ―Formal Analysis of the

Probability of Interaction Fault Detection Using

random testing,‖ IEEE transactions on software

engineering, Vol. 38, 2012.

[9]. C. Fang, Z. Chen, K. Wu, and Z. Zhao.

―Similarity-based test case prioritization using

ordered sequences of program entities,‖ Software

Quality Journal, No. 22, 2014, pp.335-361.

Author Biography

Dr. P. Maragathavalli

She received her B.E. degree in CSE

from Bharathidasan University,

M.Tech. degree in CSE from

Pondicherry University and Ph.D

degree in CSE from Pondicherry

University. She is working as Assistant Professor in the

Department of Information Technology, Pondicherry

Engineering College. She is a Life member of ISTE.

A. Saranya

She is pursuing her M.Tech degree in the

Department of Information Technology

from Pondicherry Engineering College.

