
CSEIT1722394 | Received : 26 April 2017 | Accepted : 11 May 2017 | May-June-2017  [(2)3: 266-272] 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307 

 

266 

Traffic-Aware Partition and Aggregation for Big Data 

Applications in Map-Reduce 
 Dinesh Kumar S., Siddique Ibrahim S. P. , Kirubakaran R 

Department of Computer Science and Engineering, Kumarguru College of Technology, Coimbatore, TamilNadu, 

India 

 

ABSTRACT 
 

The Map Reduce programming model simplifies large-scale data processing on commodity cluster by exploiting 

parallel map tasks and reduces tasks. Map Reduce is a programming model and an associated implementation for 

processing and generating big data sets with a parallel, distributed algorithm on a cluster .Although many efforts 

have been made to improve the performance of Map Reduce jobs, they ignore the network traffic generated in the 

shuffle phase, which plays a critical role in performance enhancement. Traditionally, a hash function is used to 

partition intermediate data among reduce tasks, which, however, is not traffic - efficient because network topology 

and data size associated with each key are not taken into consideration. The objective of this system is to reduce the 

network traffic cost for a map reduce job by designing a intermediate data partition scheme.  

Keywords: Map Reduce, Hadoop, Stragglers, Partition 

 

I. INTRODUCTION 

 
Map Reduce has emerged as the most popular 

computing framework for big data processing due to its 

simple programming model and automatic management 

of parallel execution. MapReduce is an open source. 

Map Reduce is used for various big data applications, 

such as machine learning bioinformatics and cyber 

security. Map Reduce divides a computation into two 

main phases, namely map and reduce which in turn are 

carried out by several map tasks and reduce tasks, 

respectively. In the map phase, map tasks are launched 

in parallel to convert the original input splits into 

intermediate data in a form of key/value pairs. These 

key/value pairs are stored on local machine and 

organized into multiple data partitions, one per reduce 

task. In the reduce phase, each reduce task fetches its 

own share of data partitions from all map tasks to 

generate the final result.  

 

There is a shuffle step between map and reduce phase. 

In this step, the data produced by the map phase are 

ordered, partitioned and transferred to the appropriate 

machines executing the reduce phase. The resulting 

network traffic pattern from all map tasks to all reduce 

tasks can cause a great volume of network traffic, 

imposing a serious constraint on the efficiency of data 

analytic applications.   

 

We consider a toy example with two map tasks and two 

reduce tasks, where intermediate data of three keys K1, 

K2, and K3 are denoted by rectangle bars under each 

machine. If the hash function assigns data of K1 and 

K3 to reducer 1, and K2 to reducer 2, a large amount of 

traffic will go through the top switch. To tackle this 

problem occurred by the traffic-oblivious partition 

scheme, we take into account of both task locations and 

data size associated with each key in this paper. By 

assigning keys with larger data size to reduce tasks 

closer to map tasks, network traffic can be significantly 

reduced. In the same example above, if we assign K1 

and K3 to reducer 2, and K2 to reducer 1, as shown in 

Fig. 1(b), the data transferred through the top switch 

will be significantly reduced.  

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_%28computing%29


Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 267 

               
Figure 1. Two Map Reduce partition schemes 

  

To further reduce network traffic within a MapReduce 

job, we consider to aggregate data with the same keys 

before sending them to remote reduce tasks. Although a 

similar function, called combine, has been already 

adopted by Hadoop, it operates immediately after a 

map task solely for its generated data, failing to exploit 

the data aggregation opportunities among multiple 

tasks on different machines. As an example shown in 

Fig. 2(a), in the traditional scheme, two map tasks 

individually send data of key K1 to the reduce task. If 

we aggregate the data of the same keys before sending 

them over the top switch, as shown in Fig. 2(b), the 

network traffic will be reduced. 

 
Figure 1. Two schemes of intermediate data 

transmission in the shuffle phase. 

 

In this paper, we jointly consider data partition and 

aggregation for a MapReduce job with an objective that 

is to minimize the total network traffic. In particular, 

we propose a distributed algorithm for big data 

applications by decomposing the original large-scale 

problem into several sub problems that can be solved in 

parallel. Moreover, an online algorithm is designed to 

deal with the data partition and aggregation in a 

dynamic manner. Finally, extensive simulation results 

demonstrate that our proposals can significantly reduce 

network traffic cost in both offline and online cases. 

 

II. SYSTEM ANALYSIS 

 

2.1 EXISTING SYSTEM: 

 

Existing problem of optimizing network usage in 

MapReduce scheduling in the reason that we are 

interested in network usage is twofold. Firstly, network 

utilization is a quantity of independent interest, as it is 

directly related to the throughput of the system. Note 

that the total amount of data processed in unit time is 

simply (CPU utilization) · (CPUcapacity) + 

(networkutilization)·(network capacity). CPU 

utilization will always be 1 as long as there are enough 

jobs in the map queue, but network utilization can be 

very sensitive to scheduling network utilization has 

been identified as a key component in optimization of 

MapReduce systems in several previous works. 

 

Network usage could lead us to algorithms with smaller 

mean response time. We find the main motivation for 

this direction of our work in the results of the 

aforementioned overlap between map and shuffle 

phases, are shown to yield significantly better mean 

response time than Hadoop‟s fair scheduler. However, 

we observed that neither of these two algorithms 

explicitly attempted to optimize network usage, which 

suggested room for improvement. MapReduce has 

become one of the most popular frameworks for large-

scale distributed computing, there exists a huge body of 

work regarding performance optimization of 

MapReduce.  

 

For instance, researchers have tried to optimize 

MapReduce systems by efficiently detecting and 

eliminating the so-called “stragglers” providing better 

locality of data preventing starvation caused by large 

jobs analyzing the problem from a purely theoretical 

viewpoint of shuffle workload available at any given 

time is closely related to the output rate of the map 

phase, due to the inherent dependency between the map 

and shuffle phases. In particular, when the job that is 

being processed is „map-heavy,‟ the available workload 

of the same job in the shuffle phase is upper-bounded 

by the output rate of the map phase. Therefore, poor 

scheduling of map tasks can have adverse effects on the 

throughput of the shuffle phase, causing the network to 



Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 268 

be idle and the efficiency of the entire system to 

decrease. 

 

2.1.1 DISADVANTAGES 

 

Existing model, called the overlapping tandem queue 

model, is a job-level model for MapReduce where the 

map and shuffle phases of the MapReduce framework 

are modeled as two queues that are put in tandem. 

Since it is a job-level model, each job is represented by 

only the map size and the shuffle size simplification is 

justified by the introduction of two main assumptions. 

The first assumption states that each job consists of a 

large number of small-sized tasks, which allows us to 

represent the progress of each phase by real numbers. 

 

2.2 PROPOSED SYSTEM 

 

In this paper, we jointly consider data partition and 

aggregation for a MapReduce job with an objective that 

is to minimize the total network traffic. In particular, 

we propose a distributed algorithm for big data 

applications by decomposing the original large-scale 

problem into several sub problems that can be solved in 

parallel. Moreover, an online algorithm is designed to 

deal with the data partition and aggregation in a 

dynamic manner. Finally, extensive simulation results 

demonstrate that our proposals can significantly reduce 

network traffic cost in both offline and online cases. 

 

MapReduce resource allocation system, to enhance the 

performance of MapReduce jobs in the cloud by 

locating intermediate data to the local machines or 

close-by physical machines in this locality-awareness 

reduces network traffic in the shuffle phase generated 

in the cloud data center. However, little work has 

studied to optimize network performance of the shuffle 

process that generates large amounts of data traffic in 

MapReduce jobs. A critical factor to the network 

performance in the shuffle phase is the intermediate 

data partition. The default scheme adopted by Hadoop 

is hash-based partition that would yield unbalanced 

loads among reduce tasks due to its unawareness of the 

data size associated with each key.  

 

We have developed a fairness-aware key partition 

approach that keeps track of the distribution of 

intermediate keys‟ frequencies, and guarantees a fair 

distribution among reduce tasks. have introduced a 

combiner function that reduces the amount of data to be 

shuffled and merged to reduce tasks an in-mapper 

combining scheme by exploiting the fact that mappers 

can preserve state across the processing of multiple 

input key/value pairs and defer emission of 

intermediate data until all input records have been 

processed. Both proposals are constrained to a single 

map task, ignoring the data aggregation opportunities 

from multiple map tasks a MapReduce-like system to 

decrease the traffic by pushing aggregation from the 

edge into the network. 

 

2.2.1 ADVANTAGES 

 

 Our proposed distributed algorithm and the optimal 

solution obtained by solving the MILP formulation. 

Due to the high computational complexity of the 

MILP formulation, we consider small-scale 

problem instances with 10 keys in this set of 

simulations. 

 Our distributed algorithm is very close to the 

optimal solution. Although network traffic cost 

increases as the number of keys grows for all 

algorithms, the performance enhancement of our 

proposed algorithms to the other two schemes 

becomes larger. 

 Our distributed algorithm with the other two 

schemes a default simulation setting with a number 

of parameters, and then study the performance by 

changing one parameter while fixing others. We 

consider a MapReduce job with 100 keys and other 

parameters are the same above. the network traffic 

cost shows as an increasing function of number of 

keys from 1 to 100 under all algorithms.  

 

III. ARCHITECTURE DIAGRAM 

 

 
 

 

 



Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 269 

 

 

 

 

 

 

IV .IMPLEMENTATION 

 

 

 

 

 

 

 

 

 

3.1 ONLINE EXTENSION OF HRA AND HNA 

 

In this section, we conduct extensive simulations to 

evaluate the performance of our proposed distributed 

algorithm DA. We compare DA with HNA, which is 

the default method in Hadoop. To our best knowledge, 

we are the first to propose the aggregator placement 

algorithm, and compared with the HRA that focuses on 

a random aggregator placement. All simulation results 

are averaged over 30 random instances.  

 

HNA: Hash-based partition with No Aggregation. It 

exploits the traditional hash partitioning for the 

intermediate data, which are transferred to reducers 

without going through aggregators. It is the default 

method in Hadoop.  

 

HRA: Hash-based partition with Random Aggregation. 

It adds a random aggregator placement algorithm based 

on the traditional Hadoop. Through randomly placing 

aggregators in the shuffle phase, it aims to reducing the 

network traffic cost in the comparison of traditional 

method in Hadoop. 

 

Our proposed distributed algorithm and the optimal 

solution obtained by solving the MILP formulation. 

Due to the high computational complexity of the MILP 

formulation, we consider small-scale problem instances 

with 10 keys in this set of simulations. Each key 

associated with random data size within [1-50]. There 

are 20 mappers, and 2 reducers on a cluster of 20 

machines. The parameter α is set to 0.5. The distance 

between any two machines is randomly chosen within 

[1-60]. The performance of our distributed algorithm is 

very close to the optimal solution. Although network 

traffic cost increases as the number of keys grows for 

all algorithms, the performance enhancement of our 

proposed algorithms to the other two schemes becomes 

larger. When the number of keys is set to 10, the 

default algorithm HNA has a cost of 5.0 × 104 while 

optimal solution is only 2.7×104 , with 46% traffic 

reduction.  

 

3.2 ALGORITHM 

 

3.2.1 DISTRIBUTED ALGORITHM 

 

The problem above can be solved by highly efficient 

approximation algorithms, e.g., branch-and-bound, and 

fast off-the-shelf solvers, e.g., CPLEX, for moderate-

sized input. An additional challenge arises in dealing 

with the MapReduce job for big data. In such a job, 

there are hundreds or even thousands of keys, each of 

which is associated with a set of variables (e.g., x p ij 

and y p k ) and constraints in our formulation, leading 

to a large-scale optimization problem that is hardly 

handled by existing algorithms and solvers in practice. 

 

 
 

3.2.2 ONLINE ALGORITHM 

 

We take the data size m p i and data aggregation ratio 

αj as input of our algorithms. In order to get their 

values, we need to wait all mappers to finish before 

starting reduce tasks, or conduct estimation via 

profiling on a small set of data. In practice, map and 

reduce tasks may partially overlap in execution to 

increase system throughput, and it is difficult to 

estimate system parameters at a high accuracy for big 

data applications. These motivate us to design an online 

algorithm to dynamically adjust data partition and 

aggregation during the execution of map and reduce 

tasks. 



Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 270 

 
 

3.3 MODULES 

 SERVER CLIENTS 

 DITRIBUTED DATA 

 SHEDULING TASK 

 NETWORK TRAFFIC TRACES 

 MAPREDUCE TASK  

 

3.4 MODULE DESCRIPTION 

 

3.4.1 SERVER CLIENTS 

 

Client-server computing or networking is a distributed 

application architecture that partitions tasks or 

workloads between service providers (servers) and 

service requesters, called clients. Often clients and 

servers operate over a computer network on separate 

hardware. A server machine is a high-performance host 

that is running one or more server programs which 

share its resources with clients. A client also shares any 

of its resources; Clients therefore initiate 

communication sessions with servers which await 

(listen to) incoming requests. 

 

3.4.2 DITRIBUTED DATA 

 

We develop a distributed algorithm to solve the 

problem on multiple machines in a parallel manner. 

Our basic idea is to decompose the original large-scale 

problem into several distributive solvable sub problems 

that are coordinated by a high-level master problem. 

We jointly consider data partition and aggregation for a 

MapReduce job with an objective that is to minimize 

the total network traffic. In particular, we propose a 

distributed algorithm for big data applications by 

decomposing the original large-scale problem into 

several sub problems that can be solved in parallel. 

Moreover, an online algorithm is designed to deal with 

the data partition and aggregation in a dynamic manner. 

Finally, extensive simulation results demonstrate that 

our proposals can significantly reduce network traffic 

cost in both offline and online cases. 

 

4.4.3 SHEDULING TASK 

 

MapReduce divides a computation into two main 

phases, namely map and reduce which in turn are 

carried out by several map tasks and reduce tasks, 

respectively. In the map phase, map tasks are launched 

in parallel to convert the original input splits into 

intermediate data in a form of key/value pairs. These 

key/value pairs are stored on local machine and 

organized into multiple data partitions, one per reduce 

task. In the reduce phase, each reduce task fetches its 

own share of data partitions from all map tasks to 

generate the final result. There is a shuffle step between 

map and reduce phase. In this step, the data produced 

by the map phase are ordered, partitioned and 

transferred to the appropriate machines executing the 

reduce phase. The resulting network traffic pattern 

from all map tasks to all reduce tasks can cause a great 

volume of network traffic, imposing a serious 

constraint on the efficiency of data analytic 

applications. 

 

3.4.4 NETWORK TRAFFIC TRACES 

 

Network traffic within a MapReduce job, we consider 

to aggregate data with the same keys before sending 

them to remote reduce tasks. Although a similar 

function, called combiner has been already adopted by 

Hadoop, it operates immediately after a map task solely 

for its generated data, failing to exploit the data 

aggregation opportunities among multiple tasks on 

different machines. As an example shown in Fig. 2(a), 

in the traditional scheme, two map tasks individually 

send data of key K1 to the reduce task. If we aggregate 

the data of the same keys before sending them over the 

top switch, as shown in Fig. 2(b), the network traffic 

will be reduced. We tested the real network traffic cost 

in Hadoop using the real data source from latest dumps 

files in Wikimedia 

(http://dumps.wikimedia.org/enwiki/latest/). In the 

meantime, we executed our distributed algorithm using 

the same data source for comparison. Since our 

distributed algorithm is based on a known aggregation 

ratio _, we have done some experiments to evaluate it 

in Hadoop environment. 

 



Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 271 

 

3.4.5 MAPREDUCE TASK 

 

We focus on MapReduce performance improvement by 

optimizing its data transmission optimizing network 

usage can lead to better system performance and found 

that high network utilization and low network 

congestion should be achieved simultaneously for a job 

with good performance. MapReduce resource 

allocation system, to enhance the performance of 

MapReduce jobs in the cloud by locating intermediate 

data to the local machines or close-by physical 

machines locality-awareness reduces network traffic in 

the shuffle phase generated in the cloud data center. 

However, little work has studied to optimize network 

performance of the shuffle process that generates large 

amounts of data traffic in MapReduce jobs. A critical 

factor to the network performance in the shuffle phase 

is the intermediate data partition. The default scheme 

adopted by Hadoop is hash-based partition that would 

yield unbalanced loads among reduce tasks due to its 

unawareness of the data size associated with each key.  

 

To overcome this shortcoming, we have developed a 

fairness-aware key partition approach that keeps track 

of the distribution of intermediate keys‟ frequencies, 

and guarantees a fair distribution among reduce tasks. 

In addition to data partition, many efforts have been 

made on local aggregation, in-mapper combining and 

in-network aggregation to reduce network traffic within 

MapReduce jobs. have introduced a combiner function 

that reduces the amount of data to be shuffled and 

merged to reduce tasks an in-mapper combining 

scheme by exploiting the fact that mappers can 

preserve state across the processing of multiple input 

key/value pairs and defer emission of intermediate data 

until all input records have been processed. Both 

proposals are constrained to a single map task, ignoring 

the data aggregation opportunities from multiple map 

tasks have proposed a MapReduce-like system to 

decrease the traffic by pushing aggregation from the 

edge into the network. 

 

 

 

 

 

 

 

 

 

IV. APPENDIX 

 

4.1 SAMPLE SCREEN SHOTS 

 

 

 

 
 

 
 

 



Volume 2 | Issue 3 | May-June-2017  | www.ijsrcseit.com 

 
 272 

 

 

 

 

 
 

V. CONCLUSION 
 

In this paper, we study the joint optimization of 

intermediate data partition and aggregation in 

MapReduce to minimize network traffic cost for big 

data applications. We propose a three-layer model for 

this problem and formulate it as a mixed-integer 

nonlinear problem, which is then transferred into a 

linear form that can be solved by mathematical tools. 

To deal with the large-scale formulation due to big data, 

we design a distributed algorithm to solve the problem 

on multiple machines. Furthermore, we extend our 

algorithm to handle the MapReduce job in an online 

manner when some system parameters are not given. 

Finally, we conduct extensive simulations to evaluate 

our proposed algorithm under both offline cases and 

online cases. The simulation results demonstrate that 

our proposals can effectively reduce network traffic 

cost under various network settings. 

 

VI. REFERENCES 
 

[1]. J. Dean and S. Ghemawat, “Mapreduce: simplified 

data processing on large clusters,” Communications of 

the ACM, vol. 51, no. 1, pp. 107–113, 2008.  

[2]. W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, 

“Map task scheduling in mapreduce with data locality: 

Throughput and heavy-traffic optimality,” in 

INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 

1609–1617.  

[3]. F. Chen, M. Kodialam, and T. Lakshman, “Joint 

scheduling of processing and shuffle phases in 

mapreduce systems,” in INFOCOM, 2012 

Proceedings IEEE. IEEE, 2012, pp. 1143–1151.  

[4]. Y. Wang, W. Wang, C. Ma, and D. Meng, “Zput: A 

speedy data uploading approach for the hadoop 

distributed file system,” in Cluster Computing 

(CLUSTER), 2013 IEEE International Conference on. 

IEEE, 2013, pp. 1–5.  

[5]. S. Chen and S. W. Schlosser, “Map-reduce meets 

wider varieties of applications,” Intel Research 

Pittsburgh, Tech. Rep. IRP-TR-08-05, 2008.  

[6]. J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J. Carey, 

M. Weimer, T. Condie, and R. Ramakrishnan, 

“Iterative mapreduce for large scale machine 

learning,” arXiv preprint arXiv:1303.3517, 2013.  

[7]. S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, 

and R. S. Schreiber, “Presto: distributed machine 

learning and graph processing with sparse matrices,” 

in Proceedings of the 8th ACM European Conference 

on Computer Systems. ACM, 2013, pp. 197– 210. 


