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ABSTRACT 
 

Semisupervised learning is very important in machine learning for research processing. The main reason is small 

amount labeled examples and large amount unlabeled examples used. It reduce the expense of the process. In this 

paper, proposed a regression algorithm applied to the regularization method. Tangent space intrinsic manifold 

regularization method is dimensionality reduction technique. 
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I. INTRODUCTION 

 

Semisupervised classification used to estimate the 

decision function from small labeled examples and 

large unlabeled examples need to reduce the expensive 

or time-consuming label acquisition process. 

Regression analysis, a statistical technique for 

estimating the relationships among variables. The 

Linear Regression used to find the relationship between 

attributes. Tangent space intrinsic manifold 

regularization used to find the intersecting region of the 

data plotted region it is estimated by using the 

regularization. The dimensionality of the region can 

minimized for the process. 

 

II.  METHODS AND MATERIAL 

 

1. Existing and Proposed System 

 

A. Existing  System 

 

System In the previous paper they proposed the 

semisupervised support vector machine with tangent 

space intrinsic manifold regularization [1].The new 

algorithm is called as Tangent space intrinsic manifold 

regularization to approximate a manifold more subtly. 

From this regularization, we can learn a linear function 

f (x) on the manifold. Two learning machines tangent 

space intrinsic manifold regularized SVMs (TiSVMs) 

and tangent space intrinsic manifold regularized twin 

SVMs (TiTSVMs) are thus proposed. 

 

Algorithm1 : Tangent Space Intrinsic Manifold 

Regularized Support Vector 

 

Machines (TiSVMs) 

1: Input: l labeled examples, u unlabeled examples. 

2: Obtain H1, h1, H2, h2. 

3: Solve the quadratic programming [3] by using cross 

validation to choose parameters. 

4: Output:Predict the label of unlabeled training 

examples according to [4]; predict the label of a new 

example according to [5]. 

 

Algorithm2 : Tangent Space Intrinsic Manifold 

Regularized Twin Support Vector Machines 

(TiTSVMs). 

1:Input: llabeled examples (l1 positive examples and 

l2 negative examples), u unlabeled examples. 

2: Obtain H+1 , H−1 , h+1 , h−1 , H+2 , 

H−2 ,h+ 2 , h−2 . 

3: Solve the quadratic programming [6] and [7] by 

using cross-validation to choose parameters. 

4: Output : Predict the label of unlabeled training 

examples according to [8]; predict the label of a new 

example according to [4]. 
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B. Proposed System 

 

In my proposed system regression used for the 

manifold regularization for estimating the relationship 

among the variables. The processing can be classified 

into following sections: (i)Semisupervised Linear 

Regression (ii)Methodology of Tangent space intrinsic 

manifold regularization (iii)Regression with manifold 

regularization 

 

2. Semisupervised Regression 

 

In stastical modeling, regression analysis is a statistical 

process for estimating the relationships among 

variables.It includes many techniques for modeling and 

analyzing several variables, when the focus is on the 

relationship between a dependent variables and one or 

more independent variables (or 'predictors'). In stastics, 

linear regression is an approach for modeling the 

relationship between a scalar dependent variables y and 

one or more explanatory (or independent variables) 

denoted X.linear regression can be used to fita 

predictive model to an observed data set of y and X 

values. In linear regression the following functions can 

be calculated. 

(i)Covariance 

(ii)Correlation coefficient 

 

This two measures used to calculate the linear 

regression in the given data sets for identifying the 

relation. 

 

y ~ 1 + x1*x2 + x1^2 + x2^2 + (x1^2):x2 + x1: 

(x2^2) + x1^3 + x2^3 

 
Table 1. Correlation Coefficient 

Cov(Y, X)=Cor(Y,X)/sy.sx 

 

The covariance calculated from this formula. 

 

3. Methodology of Tangent Space Intrinsic 

Manifold Regularization 

 

In mathematics, the tangent space of a manifold define 

the generalization of vectors from affine configuration 

spaces to general manifolds, that gives the 

displacement of the one point to other. Fig.2.Tangent 

space The data lying in a high-dimensional space are 

assumed to be intrinsically of low dimensionality, data 

can be well characterized by far fewer parameters or 

degrees of freedom than the actual ambient 

representation. In manifold learning, distribution of 

data nears the low dimensional manifold. The 

regularization method contain the intrinsic to data 

manifold to prefers the linear functions on the 

manifold. The following fundamental elements 

involved in the regularization. 

 

a)Local Tangent Space 

b)Adjacent Tangent Space 

 

We illustrate that this regularization method can obtain 

good and reasonable data embedding results[2]. 

 

Rd,where M is a smooth manifold on Rd Where f (x) is 

assumed to be a linear function with respect to the 

manifold M.Let m be the dimensionality of M. 

 

f (x) ≈ bz + w_ z uz(x) + o(_x − z_2 

 

locally around z, where uz(x) = Tz(x − z) is an m-

dimensional vector representing x in the tangent space 

around z, and Tz is dimensional vector representing x 

in the tangent space around z, and Tz is an m × d 

matrix that projects x around z to a representation in the 

tangent space of M at z. 

 

bz + w_ z uz(x) ≈ bz_ + w_ z_ uz_(x) +O(_x − z__2 + 

_x − z_2). 

 

That is, bz + w_ z uz(x) ≈ bz_ + w_ z_ uz_(x). 

 

This means that bz + w_ z Tz(x − z) ≈ bz_ +w_ z_ Tz_ 

(x − z_). 

 

Setting x = z, we obtain bz ≈ bz_ + w_ z_ 
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Tz_ (z − z_), and bz_ + w_ z_ Tz_ (z − z_ ) + w_ z 

Tz(x − z) ≈ bz_ + w_ z_ Tz_ (x − z_). 

 

This implies that w_ z Tz(x − z) ≈ w_ z_ 

 

Tz_ (x − z) ≈ w_ z_ Tz_T_ z Tz(x − z) + O(_x − z__2 

+ _x − z_2). 

 

III. RESULTS AND DISCUSSION 

 

REGRSSION WITH TANGENT SPACE MANIFOLD 

REGULARIZATION  

 

The linear regression identify the relation of attributes 

in the intersecting region of the tangent space. In this 

process implemented in the matlab for plotting the data 

set in the X and Y axis for the processing. 

 

 
Figure 1. Calculation of tangent space 

 

To remove the beyond the limit from the region for the 

manifold process then the data inside the region linear 

regression applied for finding the relation. 

 

if all(is finite(xlim_)) 

xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_); 

set(ax_,'XLim',xlim_) 

else 

set (ax_, 'XLim',[155.61000000000001, 

195.38999999999999]); end 

 

 

 

 

 

IV.CONCLUSION 

 
In this paper linear regression algorithm applied to the 

tangent space intrinsic manifold regularization. Linear 

regression efficient for the manifold processing, fitting 

process used to get the data inside the region. 
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