
CSEIT172281 | Received : 10 March 2017 | Accepted : 21 March 2017 | March-April-2017 [(2)2: 313-317]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

313

Website Content Management System
B. Sankari1, S. Ajikumar2

¹PG Scholar, Department of M.Sc (Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu, India

² Research Supervisor, Department of M.Sc (Software Engineering), PSN College of Engineering & Technology, Tirunelveli, Tamilnadu,

India

ABSTRACT

Bug Tracking, Help Desk Ticketing, issue raising, search facility, help information, issue resolution. Issues related

to software projects can be raised, tracked and resolved by Employees of different departments. Resolved issues can

be allowed to access from Knowledge Base as Knowledge elements. The different groups and representatives can

interact each other through emails.The issue tracking system does all the jobs that are done in conventional system

but ,here , everything is done in more formal and efficient manner. All the users of organization can interact with

each other through the Issue Tracking System. This system acts as an interface between the employees thereby

enabling them to forward their issues to the centralized Issue tracking system. Hence, making the work easy for both

the issue raiser and the resolved. It totally avoids the involvement of middlemen in getting resolution for a particular

issue.The Issue Tracking system is an intranet application, which provides information about issues in software

projects, in detail. This product develops a system that can be used by all the departments of a software organization.

In the conventional method, all the issues are dealt manually .The progress of the issues are also checked in person,

which is a tedious task. Here, in Issue Tracking, it fulfills different requirements of administrator and employees of a

software development organization efficiently. The specific purpose of the system is to gather and resolve issues

that arise in different projects handled by the organization.

Keywords : Network, data, Local area Network, Transmission control protocol, Internet Protocol.

I. INTRODUCTION

Telecommunications network which allows computers

to exchange data. In computer networks, networked

computing devices exchange data with each other using

a data link. The connections between nodes are

established using either cable media or wireless media.

The best-known computer network is the Internet.

Network computer devices that originate, route and

terminate the data are called network nodes. Nodes can

include hosts such as personal computers, phones,

servers as well as networking hardware. Two such

devices can be said to be networked together when one

device is able to exchange information with the other

device, whether or not they have a direct connection to

each other .Computer networks differ in the

transmission medium used to carry their signals,

communications protocols to organize network traffic,

the network's size, topology and organizational intent.

Computer networks support an enormous number of

applications and services such as access to the World

Wide Web, digital video, digital audio, shared use of

application server, printers, and fax machines, and use

of email and instant messagingapplications as well as

many others. In most cases, application-specific

communications protocols are layered (i.e. carried as

payload) over other more general communications

protocols.

A computer network facilitates interpersonal

communications allowing users to communicate

efficiently and easily via various means: email, instant

messaging, chat rooms, telephone, video telephone

calls, and video conferencing. Providing access to

informationon shared storage devices is an important

feature of many networks. A network allows sharing of

files, data, and other types of information giving

authorized users the ability to access information stored

on other computers on the network. A network allows

sharing of network and computing resources. Users

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 314

may access and use resources provided by devices on

the network, such as printing a document on a shared

network printer. Distributed computing uses computing

resources across a network to accomplish tasks.

 A computernetwork may be usedby computer crackers

to deploy computer viruses or computer worm son

devices connected the network, or to prevent these

devices from accessing the network via a denial of

service attack.

Computer communication links that do not support

packets, such as traditionalpoint-to-point

telecommunication links, simply transmit data as a bit

stream. However, most information in computer

networks is carried in packets. A network packet is a

formatted unit of data (a list of bits or bytes, usually a

few tens of bytes to a few kilobytes Long) carried by a

packet-switched network. In packet networks, the data

is formatted into packets that are sent through the

network to their destination. Once the packets arrive

they are reassembled into their original message. With

packets, the band width of the transmission medium

can be better shared among users than if the network

were circuit switched. When one user is not sending

packets, the link can be filled with packets from others

users, and so the cost can be shared, with relatively

little interference, provided the link isn't over used.

Packets consist of two kinds of data: control

information, and user data (payload). The control

information provides data the network needs to deliver

the user data, for example: source and destination

network addresses, error detection codes, and

sequencing information.

User queries. For both query options, the query and the

preferences are given as input to the query parser.

Apart from the core PrefDB query processing strategies

that blend preference evaluation into query processing,

we have also implemented a set of plug-in methods,

which are described in the Appendix. Below is an

overview of the core PrefDB modules

Figure 2. System Architecture

• The profile manager selects from the database

preferences that can be combined with the

conditions of the issued query. For this purpose, we

use the preference selection algorithm proposed in

[20]

• The query parser takes as input the query and

preferences and generates an extended query plan

that is passed to the PrefDB query optimizer.

• The query optimizer improves the input plan by

applying a set of algebraic rules. This improved

plan and a cost model for preference evaluation are

used for generating alternative plans that interleave

preference evaluation and query processing in

different ways and for picking the plan with the

cheapest estimated cost.

• The execution engine realizes the execution of the

query plan selected by the query optimizer using

one of our execution methods. We discuss

II. METHODS AND MATERIAL

A. Related Work

The concept of preference-aware query processing

appears in many applications, where there is a matter of

choice among alternatives, including query

personalization [10], [18], [20], recommendations [4]

and multi-criteria decision making [9], [13]. We

discuss prior work with respect to how preferences are

represented in the context of relational data and how

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 315

they are integrated and processed in queries. In

representing preferences, there are two approaches. In

the qualitative approach, preferences are specified

using binary predicates called preference relations [5],

[10], [18]. In quantitative approaches, preferences are

expressed as scores assigned to tuples [6], [23] be

specified based on any combination of scores,

confidences and context. Our framework allows us to

process in a uniform way all these different query and

preference types. In terms of preference integration and

processing, one approach is to translate preferences into

conventional queries and execute them over the DBMS

[14], [19], [20], [21], [24]. Several efficient algorithms

have been proposed for processing different types of

queries, including top-k queries [13] and skylines [9].

These algorithms as well as query translation methods

are typically implemented outside the DBMS. Thus,

they can only apply coarse grained query optimizations,

such as reducing the number of queries sent to the

DBMS. Further, as we will also demonstrate

experimentally plug-in methods do not scale well when

faced with multi-join queries or queries involving many

preferences. Native implementations modify the

database engine by adding specific physical operators

and algorithms. RankSQL [23] extends the relational

algebra with a new operator called rank that enables

pipelining and hence optimizing top-k queries. Another

example of operator is the winnow operator [10], which

selects all tuples corresponding to the Pareto optimal

set. Our approach is different from existing works in

several ways. First, existing techniques are limited to a

particular type of query. In contrast to these approaches,

we consider preference evaluation (how preferences are

evaluated on data) and selection of the preferred tuples

that will comprise the query answer as two operations.

We focus on preference evaluation as a single operator

that can be combined with other operators and we use

its algebraic properties in order to develop generic

query optimization and processing techniques. Finally,

we follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. Once these rules are specified a new

operator can be used inside queries. It is worth noting

that both FlexPref and our work are motivated by the

limitations of plug-in and native approaches. FlexPref

approaches the problem from an extensibility

viewpoint. Our focus is on the problem of preference

evaluation as an operator that is separate from the

selection of preferred answers, and we study how this

operator can be integrated into query processing in an

effective yet not obtrusive to the database engine way.

B. Proposed Methodology

In this paper, we first construct an extended query plan

that contains all operators that comprise a query and we

optimize it. Then, for processing the optimized query

plan, our general strategy is to blend query execution

with preference evaluation and leverage the native

query engine to process parts of the query that do not

involve a prefer operator. Given a query with

preferences, the goal of query optimization is to

minimize the cost related with preference evaluation.

Based on the algebraic properties of prefer, we apply a

set of heuristic rules aiming to minimize the number of

tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization

approach. Using the output plan of the first step as a

skeleton and a cost model for preference evaluation, the

query optimizer calculates the costs of alternative plans

that interleave preference evaluation and query

processing in different ways. Two plan enumeration

methods, i.e., a dynamic programming and a greedy

algorithm are proposed. For executing an optimized

query plan with preferences, we describe an improved

version of our processing algorithm (GBU) (an earlier

version is described in. The improved algorithm uses

the native query engine in a more efficient way by

better grouping operators together and by reducing the

out-of-the-engine query processing.

Modules:

Registration & Interest Sum up

Query Formation

Query Optimization & Execution

A preferential query combines p-relations, extended

relational and prefer operators and returns a set of

tuples that satisfy the boolean query conditions along

with their score and confidence values that have been

calculated after evaluating all prefer operators on the

corresponding relations. Intuitively, the better a tuple

matches preferences and the more (or more confident)

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 316

preferences it satisfies, the higher its final score and

confidence will be, respectively. The query parser adds

a prefer operator for each preference. Finally, the query

parser checks for each preference, whether it involves

an attribute (either in the conditional or the scoring part)

that does not appear in the query and modifies project

operators, such that these attributes will be projected as

well.

Proportional to the number of tuples flowing through

the operators in the query plan. Assuming a fixed

position for the other operators, the goal of our query

optimizer is essentially to place the prefer operators

inside the plan, such that the number of tuples flowing

through the score tables is minimized. The execution

engine of PrefDB is responsible for processing a

preferential query and supports various algorithms.

III. RESULTS AND DISCUSSION

The implementation results can be shown as figure

below

IV.CONCLUSION

Various web based application makes the human work

schedule as a simple one, as well as in this web based

project tracking and resolving the clients send their

queries to the developer of the software via online. The

people who are going to access in this software project

are the system administrator, staff, and user.

The administrator controls the number of modules and

the administrator maintains user queries and everything.

The person who develop this project and who answer

various queries of the user is the staff. The users are the

persons who are use the software and asking query to

developer.

The tracking and resolving is mechanism of online

approach of the customer satisfaction using the

ASP.Net programming.

V. REFERENCES

[1]. DBLP computer science bibliography.

http://dblp.uni-trier.de/.

[2]. IMDB movie database. http://www.imdb.com.

[3]. Query templates. http://tinyurl.com/8zs3e77.

[4]. G. Adomavicius and A. Tuzhilin. Toward the

next generation of recommender systems: A

survey of the state-of-the-art and possible

extensions. TKDE, 17(6):734–749, 2005.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 317

[5]. R. Agrawal, R. Rantzau, and E. Terzi. Context-

sensitive ranking. In SIGMOD, pages 383–394,

2006.

[6]. R. Agrawal and E. L. Wimmers. A framework

for expressing and combining preferences. In

SIGMOD, pages 297–306, 2000.

[7]. A. Arvanitis and G. Koutrika. PrefDB: Bringing

preferences closer to the DBMS. In SIGMOD,

pages 665–668, 2012.

[8]. A. Arvanitis and G. Koutrika. Towards

preference-aware relational databases. In ICDE,

pages 426–437, 2012.

[9]. S. Borzs ¨ onyi, D. Kossmann, and K. Stocker.

The skyline operator. ¨ In ICDE, pages 421–430,

2001.

[10]. J. Chomicki. Preference formulas in relational

queries. TODS, 28(4):427–466, 2003.

[11]. V. Christophides, D. Plexousakis, M. Scholl, and

S. Tourtounis. On labeling schemes for the

semantic web. In WWW, pages 544–555, 2003.

[12]. W. W. Cohen, R. E. Schapire, and Y. Singer.

Learning to order things. J. Artif. Intell. Res.

(JAIR), 10:243–270, 1999.

[13]. R. Fagin, A. Lotem, and M. Naor. Optimal

aggregation algorithms for middleware. In

PODS, pages 102–113, 2001.

[14]. P. Georgiadis, I. Kapantaidakis, V.

Christophides, E. M. Nguer, and N. Spyratos.

Efficient rewriting algorithms for preference

queries. In ICDE, pages 1101–1110, 2008.

[15]. S. Holland, M. Ester, and W. Kießling.

Preference mining: A novel approach on mining

user preferences for personalized applications. In

PKDD, pages 204–216, 2003.

[16]. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.

Supporting top-k join queries in relational

databases. In VLDB, pages 754–765, 2003.

[17]. T. Joachims. Optimizing search engines using

clickthrough data. In KDD, pages 133–142,

2002.

[18]. W. Kießling. Foundations of preferences in

database systems. In VLDB, pages 311–322,

2002.

[19]. W. Kießling and G. Kostler. Preference SQL -

design, implementation, experiences. In VLDB,

pages 990–1001, 2002.

[20]. G. Koutrika and Y. E. Ioannidis. Personalization

of queries in database systems. In ICDE, pages

597–608, 2004.

[21]. M. Lacroix and P. Lavency. Preferences: Putting

more knowledge into queries. In VLDB, pages

217–225, 1987.

[22]. J. Levandoski, M. Mokbel, and M. Khalefa.

FlexPref: A framework for extensible preference

evaluation in database systems. In ICDE, pages

828–839, 2010.

[23]. C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song.

RankSQL: Query algebra and optimization for

relational top-k queries. In SIGMOD, pages 131–

142, 2005.

[24]. C. Mishra and N. Koudas. Stretch ’n’ shrink:

Resizing queries to user preferences. In

SIGMOD, pages 1227–1230, 2008.

[25]. P. G. Selinger, M. M. Astrahan, D. D.

Chamberlin, R. A. Lorie, and T. G. Price. Access

path selection in a relational database

management system. In SIGMOD, pages 23–34,

1979.

[26]. K. Stefanidis, E. Pitoura, and P. Vassiliadis.

Adding context to preferences. In ICDE, pages

846–855, 2007.

