
CSEIT172289 | Received : 03 May 2017 | Accepted : 11 May 2017 | May-June-2017 [(2)3: 219-226]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

219

Wildcard Search using Fuzzy Auto Completion
Ansari Aadil Salim1, Ansari Shawana Aadil2, Ansari Zeeshan Salim3

1 Assistant Professor at MMANTC, Department of Computer Engineering, Malegaon, India
2Department of Electronics and Communication, SSVPS BSD COE, Dhule, India

3Department of Computer Engineering, SSVPS BSD COE, Dhule, India

ABSTRACT

Most popular information discovery method is through keyword search, as user does not need to know either the

underlying structure of the data and a query language. The search engines available today provide keyword search

on top of sets of documents. While traditional database management systems offer powerful query languages, they

do not allow keyword-based search and we focus on how to support this type of search using the native database

language, SQL. Searching in a relational in a relational database is not an easy task because the data present are

complicated. Wildcard search is a search with a character that can be used to substitute for any other character(s) in

a string. Fuzzy autocompletion method is used to generate the results by typing incomplete keyword character by

character. In this paper we are combining the property of both the techniques wildcard search and the fuzzy

autocompletion to generate the search results efficiently. Using the above method we present solutions for both

single-keyword queries and multi keyword queries, and develop novel techniques for on the fly search using SQL

by allowing mismatches between query keywords and answers. Experiments on large, real data sets show that our

techniques enable DBMS systems to support on-the-fly search on tables with millions of records.

Keywords : Autocompletion, wildcard, databases, SQL, fuzzy, DBMS.

I. INTRODUCTION

Most information systems nowadays improve user

search experiences by providing instant feedback as

users formulate search queries. Many search engines

and online search forms support auto completion this

method shows suggested queries and answers “on the

fly” means as a user types in a keyword query character

one after the other. In relation to computer technology,

"on the fly" means activities that is dynamic in nature

rather than as the result of something that is statically

predefined [13]. For example, consider the Web search

interface at Youtube [19], it allows a user to search for

videos related to different genres. If a user types in a

partial query “Sta,” the system shows videos with a

title matching this keyword as a prefix, such as “Star”

and “StarWars.” The instant feedback helps the user to

formulate the query also in understanding the

underlying data. This type of search is generally called

on-the-fly, search-as-you-type or type-ahead search.

Since information in a search systems is stored in the

backend relational DBMS, so one of the important

challenge is to support search-as-you-type on the data

residing in a DBMS. Databases such as SQL server and

Oracle already support prefix search, and we could use

this feature to do search-as-you-type. However, not all

databases provide this feature. For this reason, we

study different methods that can be used in all

databases. Predictions in searching are possible search

terms you can use that are related to the terms you‟re

typing and what other people are looking for ,so we are

implementing this feature with Fuzzy technique. We

are going to use Fuzzy autocompletion feature which

can help in formulating queries in addition with the

Wildcard. A wildcard character can be used to

substitute for any other character(s) in a string which

reduce the efforts of knowing the correct spelling of the

keyword.

In this paper we study how to support type ahead

search on DBMS systems using Wildcard with fuzzy

autocompletion. Here we going to find answers to a

search query as a user types in keywords character by

character.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 307

II. LITERATURE SURVEY

We have studied different techniques to search on SQL

Relational databases below are some of them.

Nandi et al studied the problem of autocompletion at

the level of a single “word”, and also at level of a

multi-word “phrase”. They found two main challenges:

one was with the number of phrases the second is that a

“phrase”, which is not a “word”, it does not have a

well-defined boundary, so that the autocompletion

system has to decide not just what to predict, but also

how far [1].

Li et al. studied the use of auxiliary indexes stored as

tables to increase search performance. They

demonstrated searching in a database using many

different techniques and compared them to show that

which can work better. They present solutions for

single-keyword and multikeyword queries, and

developed the technique for fuzzy search using SQL

[13].

Li et al. proposed a search method DBease which make

databases user-friendly and easily available. It allows

users to explore data “on the fly” as they type in

keywords. They developed various techniques to

improve keyword search, form-based search, and SQL-

based search for enhancing user experiences. Search as-

you-type help user‟s on-the-fly to explore the

underlying data. Form-based search can provide on-

the-fly faceted search [8].

Feng et al proposed a concept called Compact Steiner

Tree (CSTree), which can be used to approximate the

Steiner tree problem for answering top-k keyword

queries efficiently. To benefit from its indexing and

query-processing capability their proposed technique

can be implemented using a standard relational

RDBMS. This techniques was implemented in MYSQL,

which can provide built-in keyword-search capabilities

using SQL [12].

Ji et al. proposed a information-access paradigm, called

“interactive, fuzzy search,” the system which searches

the data during the typing work as the user types in

query keywords. Autocomplete interfaces was extended

by allowing keywords to appear in multiple attributes

(in an arbitrary order) of the underlying data; and

finding related records that have keywords matching

query keywords approximately. Their framework

allowed users to explore data as they type [4].

Chaudhari et al. proposed a method capture input

typing errors via edit distance. They show that a native

approach of invoking an offline edit distance matching

algorithm at each step performs poorly and present

more efficient algorithms. Their study demonstrated the

effectiveness of algorithms. However they focused on

the algorithmic aspects of error-tolerant autocompletion

which are relevant regardless of the specific application

[5].

Li et al. proposed a novel approach to keyword search

in the relational world, called Tastier. A system that

can bring instant gratification to users by supporting

type-ahead search, it find answers “on the fly” as the

user types in query keywords. To find appropriate

results on-the-fly by joining tuples in the database they

developed an index structures and algorithms. They

improved the query performance by grouping relevant

tuples and pruning irrelevant tuples efficiently also

proposed a method to answer a query efficiently by

predicting highly relevant complete queries for the user.

Their main challenge is to achieve a interactive high

speed for large volume of data in multiple tables, so

that within milliseconds, a query can be answered

efficiently [6].

Qin et al. proposed a system by using SQL to compute

all the interconnected tuple structures for a given

keyword query. To control the size of the structures

they used three different types of interconnected tuple

structures. The main idea behind their approach is tuple

reduction. A middleware free approach to compute

such m-keyword queries on RDBMSs using SQL only.

Their middleware free approach makes it possible to

fully utilize the functionality of RDBMSs to support

keyword queries in the same framework of RDBMSs

[7].

TABLE 1. Table dblp: A Sample Publication Table (about “Privacy”)

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 307

ID Title Authors Book

title

Year

r1 K-Automorphism: A Framework for Privacy

Preserving Network Publication

Lei ,Lei Chen,M. Tamer Ozsu PVDLB 2009

r2 Privacy Preserving Singular Value

Decomposition

Shuguo , Wee Keong ,Philip S.Yu ICDE 2009

r3 Privacy Preservation Aggregates on Hidden

Database:Why and How?

Arjun Dasgupta, Gautam Das, Surajit

Chuadhari

SIGMOD 2009

r4 Privacy-preserving Indexing of Documents on

the Network

Mayank Bawa, Roberto J. Bayard, , Jaideep

Vaidya

VLDBJ 2009

r5 On Anti Corruption Privacy Preserving

Publication

Yufei Tao, Xiaokui Xiao, Jiexing

Li,Donghui Zhang

ICDE 2008

r6 Preservation of Proximity Privacy in

Publishing Numerical Sensitive Data

Jiexing Li, Yufei Tao, Xiaokui Xiao, SIGMOD 2008

r7 Hiding in the Crowd : Privacy Preservation

on Evolving Streams through Correlation

Tracking

Feifei Li, Jimeng Sun, Spiros

Papadimitriou, George A. Mihaila,Ioana

Stanoi

ICDE 2007

r8 The Boundary Between Privacy and Utility in

Data Publishing

Vibhor Rastogi, Sungho Hong ,Dan Suciu VLDB 2007

r9 Privacy Protection in Personalized Search Xuehea Shen ,Bin Tan, Chen Xiang Zhai SIGIR 2007

r10 Privacy on Database Publishing Alin Deutsch, Yannis Papakonstantinou ICDT 2005

It becomes even more unclear if we want to use

features in search-as-you-type, namely multikeyword

search and fuzzy search. In multikeyword search, a

query string have multiple keywords, and we find the

records which matches these keywords, even if the

keywords appear at other or different places. Consider,

when a user types in a query “Hiding and “Privacy” he

will get the resultant string with the record r7.

III. DATA SETS

We are using DBLP datasets in this research work.

The dblp computer science bibliography is reference

for bibliographic information on major computer

science publications. It has com eup from an early

small scale experimental web server to a popular open-

data service for the computer science community. As of

May 2016, dblp indexes over 3.3 million publications,

published by more than 1.8 million authors. To this end,

dblp indexes about than 32,000 journal volumes, more

than 31,000 conference or workshop proceedings, and

more than 23,000 monographs[50].

We collected datasets from dblp and got total of

207792 records whose size is greater than 1.5 gigabytes

which we got after extraction. The raw data which we

got was in the xml format .we then filtered it in the

excel format(.xlsx) and used this datasets in our work.

IV. PROPOSED METHOD

Our project is influenced from the existing search

system in various DBMS systems like Oracle,

Microsoft SQL server, MySQL etc. Many database

system provides prefix searching capability but it is not

supported by all the types of database special in the

relational database. In the existing sytem for type-ahead

or on-the-fly search the authors had developed a sytem

which uses two different types of methods for

searching a data using relevant keyword conventional

method was called as Exact Search in which in which

one has type the exact words of the particular

record .Consider an example if we make search as

“privacy.” in a database it will try to find the exact

copy word and gives the records where the given word

was present and other was using Fuzzy algorithm.

Fuzzy helps to find the results if we type the words

incorrectly [13]. Both the method was again classified

into many different method.

The Problem with the exact search was it takes more

time for finding the results and an ignorant user will

always find it difficult to search in the given database,

one can say that the user was “left in dark“. So it is

better to neglect this method. The Other Problem was

not with the fuzzy algorithm but with the

underutilization of the fuzzy algorithm, because it was

just useful when we type the word incorrectly. Many

Studies have shown that the fuzzy can be useful for

finding answer in a database, whenever it will be used

different manner. If resources of the Fuzzy are properly

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 220

utilized it can generate efficient results at reduced time.

We proposed a system which will makes the efficient

use of fuzzy algorithm. We developed the system with

“autocompletion feature” which will find the relevant

record. It can find proper answer just by typing few

number of keywords or we call it few character it will

autocomplete our queries at reduced time interval. With

the help of this autocompletion feature an unknown

user also can make an effective search. So we are

adding this autocompletion feature in some existing

fuzzy technique.

One of the most important concept of Wildcard we are

going to use in combination with the fuzzy

autocompletion feature. Wildcard allows minor

mismatches in the resultant queries which can produce

an effective results.

In this paper our main aim is to support search-as-you-

type on DBMS systems using the native query

language (SQL). We are going to use SQL to find

answers to a search query as a user types in keywords

character by character. Our goal is to make effective

use of the built-in query engine of the database system

as much as possible. In this way, we can reduce the

coding headaches to support search-as-you-type.

We applied wildcard techniques in combination with

the fuzzy autocompletion to enhance the previous

existing results .

3.1 Introduction To Wildcard Technique

A wildcard is usually a character that may be used in

a search term to represent one or more other characters.

The two most commonly used wildcards are: An

asterisk (*) may be used to specify any number of

alphanumeric characters [52] [53]. Wildcards allow

you to bring various words by using the same common

characters without having to type each possibility as a

separate keyword. We can use Wildcards or some other

universal characters to show the spot in your keyword

where system can replace any character. We can use a

question mark (?) in the place of a character in our

search term to indicate that any character can come up

at that specific spot i.e same position in the search term.

For example, if we type advis?r as search term, we get

the results which will include advisor and adviser. In

our search term if two or more question marks comes

together , then the system makes replacement based on

the number of question marks included consecutively

in the search term.

For example, if user type ??clude term for search, your

results will include , occlude, include and exclude but

not preclude (because preclude would have required

your search term to be ???clude).

Here are some different kinds of example using

wildcard characters in queries:

i) The wildcard query 'f?rm' will match all of the words

'form''', 'firm', and farm -word that begins with an 'f', is

followed by any other character, and ends with the 'rm‟

characters.

ii) The wildcard query '??rm' will match all of the

words from the previous bullet, as well as words like

'worm', 'harm', 'term', , and so on - any four character

word that ends with the characters 'rm'.

iii)The wildcard query '??ow*rm' will match terms such

as 'glowworm', 'slowworm', and 'snowstorm' - any

word that begins with any two characters, followed by

the character sequence 'ow', followed by any number of

other characters, and ending in the character sequence

'rm'.

iv)the wildcard query '*rm' will match all of the words

in the previous bullets, as well as words like 'terraform',

'wheatgerm', 'alarm', 'bookworm', 'brainstorm', and so

on. Because the '*' wildcard character can represent any

sequence composed of any characters, the expression

'*rm' matches any term that ends in 'rm'. It may also

include matching terms Linux command 'rm', because

the wildcard '*' can also match zero characters. The

regular expression '?rm' would not match the Linux

command 'rm', because the '?' wildcard operator must

match a character in the specified position.

The Above wildcard method will be used in every

Fuzzy autocompletion technique which we are going to

see

3.2 Fuzzy Autocompletion

Let's say we have five people. David, Damarcus,

Daniel, Dustin, and Russ. when a user types in d. We

would match Dustin and Damarcus. Likewise, if we

typed in us, we would get an output of Dustin,

Damarcus, and Russ. At this point, it's sort of a no-

brainer. Your input-based regular expression can be

created such as

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 221

var people = ['David', 'Damascus','Daniel',

'Dustin','Russ'];

function matchPeople(input) {

var reg = new

RegExp(input.split('').join('\\w*').replace(/\W/, ""),

'i');

return people.filter(function(person) {

 if (person.match(reg)) {

return person;

}

});

}

Another example is from the table no.1 as a user types

in a single partial keyword w character by character,

fuzzy search on-the-fly finds records with keywords

similar to the query keyword. In Table 1, assuming a

user types in a query “dat,” record r8 is a relevant

answer since it contains a keyword “Data” with a “dat”

partial word it will return with the record r3 r6 r8 r10.

V. WILDCARD USING FUZZY

AUTOCOMPLETION.

In our proposed method we are combining the features

of Wildcard with the Fuzzy autocompletion and it will

be applied in the following methods-

4.1 Using Single Keyword:

 i) No Index Method - User Defined Function

ii) Index Method - UDF, Gram Based, Neighborhood

Method.

4.2 Using Multi Keyword:

 i) Using Intersect Operator

 ii) Using Full Text Indexes

 iii) Word Level Incremental Computation

PRELIMINARIES

We first formulate the problem of on-the-fly search in

DBMS and then discuss different approach to support

search .

Problem Formulation

Consider T be a relational table having attributes A1,

A2, A3 . . ., Al. Set of records R= {r1, r2, r3 . . . , rn}

be in T, and the content of record ri in attribute Aj

denoted by ri,[Aj]. Let W be the set of tokenized

keywords in R.

4.1 Using Single Keyword:

4.1.1 No Index Method – UDF

USER DEFINED FUNCTION (UDF)

A straightforward way to support search-as-you-type is

to issue an SQL query that scans each record and

verifies whether the record is an answer to the query.

Functions can be added into databases to verify

whether a record contains the query keyword Consider

an Example if we are searching for a query keyword “ri”

so we can get results from record which contain the

“tric” anywhere in the word that might be an electric or

Trick . It can be prefix or postfix or can be Infix. It will

find the resultant anwer very fast and the precision also

increases as the number of keyword will increase. We

use a UDF PXD (w,s) that takes a keyword w and a

string s as two parameters, and returns the minimal

extend distance between w and the prefixes of

keywords in s.

PXD(„„pri‟‟,r10[title])

= PXD(„„pri‟‟, „„privacy in database publishing)=4

as r10 contains a prefix “pri” with extend distance of 4

to the query. We can improve the performance by

doing early termination in the dynamic-programming

computation

4.1.1 Index Based Method

As index structures we an build auxiliary tables to have

prefix search. SQL server and Oracle are databases that

already support prefix search .we use this to do prefix

search. However, this feature is not provided by all

database. So we developed a new method to be used in

all database.

Inverted-index table. We developed this table and

assign ids to the keywords in table T by their

alphabetical order then added an inverted-index table IT

with records in the form (kid, rid), where “kid” is id of

a keyword and “rid” is id of a record which have the

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 222

keyword. If given a complete keyword, we can use the

inverted-index table to find records with the keyword.

Prefix table. For all prefixes of keywords we build a

prefix table PT with records (p, lkid, ukid), where p is a

prefix of a keyword, lkid is the smallest id of those

keywords in the table T having p as a prefix, and ukid

is the largest id of those keywords having p as a prefix.

An interesting thing is that a complete word with p as a

prefix must have an ID in the keyword range (lkid,

ukid), and each complete word in the table T with an

ID in this keyword range must have a prefix p. Thus,

for given a prefix keyword w, we can use the prefix

table to find the range of keywords with the prefix.

TABLE 2

The Inverted-Index Table and Prefix table

For example, Table 2 shows the prefix table and the

inverted-index table for the records in Table 1. The

inverted-index table has a tuple (k8, r3) since keyword

k8 (“sigmod”) is in record r3. since keyword k7 . (“sigir”)

is the minimal id of keywords with a prefix “sig,” and

keyword k8 (“sigmod”) is the maximal id of keywords

with a prefix “sig” as the prefix table has a tuple

(„„sig‟‟k7; k8).” The ids of keywords with a prefix “sig”

must be in the range (k7, k8) .If we type a partial

keyword w, we get its keyword range (lkid, ukid) using

the prefix table PT , and then find the records that have

a keyword in the range through the inverted-index table

IT as shown in Fig. 1.

Index Based UDF

Given a keyword w, we use a UDF to find its similar

prefixes from the prefix table PT . Each prefix in a SQL

query can be scan in PT and calls the UDF to check if

the prefix is similar to w. We issue the following SQL

query to answer the prefix-search query w:

SELECT T.* FROM PT, IT , T

WHERE PEDTH(w, PT , prefix, T) AND

PT .ukid ≥ IT .kid AND PT .lkid ≤ IT .kid AND

IT .rid = T.rid.

We can use length filtering to improve the performance,

by adding the following clause to the where clause:

“LENGTH(PT .prefix) LENGTH(w) + AND

LENGTH(PT .prefix) LENGTH(w)- T ”.

Gram-Based Method

There are many q-gram-based methods to support

approximate string search. Given a string s, its q-grams

are its

Figure 1. q-gram table and the neighborhood

generation table to support fuzzy search

substrings with length q. Let G
q
(s) denote the set

4
 of its

q-grams and | G
q
(s) | denote the size of G

q
(s). For

example, for “pvldb” and “vldb,” we have G
2
(pvldb) =

{pv, vl, ld, db} and G
2

(vldb) = {vl, ld, db}. Strings s1

and s2 have an edit distance within threshold T if

|G
q
(s1) ∩ G

q
(s2)| ≥ max (|s1|, |s2|) + 1- q- T * q,

where |s1| and |s2| are the lengths of string s1 and s2,

respectively. This technique is called count filtering. To

find similar prefixes of a query keyword w, besides

maintaining the inverted-index table and the prefix

table, we need to create a q-gram table GT with records

in the form <p, qgram>, where p is a prefix in the

prefix table and qgram is a q-gram of p.

Neighborhood Based Method

Ukkonen proposed a neighborhood-generation-based

method to support approximate string search [14]. We

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 223

have extended their method to use SQL to support

fuzzy on the fly search. Given below Table 3 gives a

neighborhood-generation table. Consider when a user

types in a keyword “pvldb,” we get the prefixes in DT

that have i-deletion neighborhoods in {“pvldb,” “vldb,”

“pldb,” “pvdb,” “pvlb,” “pvld”}. Here we find “vldb”

similar to “pvldb” with edit distance 1.

This method is good for short strings. But on the

otherhand, it is inefficient for long strings, especially

for large edit-distance thresholds, because given a

string with length n, it has (

)- deletion neighborhoods

and totally O(min(n
T
, 2

n
)) neighborhoods. It needs

large space to store these neighborhoods.

TABLE 3 Neighborhood-Generation Table (T = 1)

4.2 Multikeyword Queries

In this section, we study efficient techniques to support

multikeyword queries.

4.2.1 Computing Answers from Scratch

 Here we have Intersect operator and Full text

Indexes techniques.

Given a multikeyword query Q with m

keywords , , ., there are two ways to

answer it from scratch.

“INTERSECT” Operator:

This is a Simple way to first compute the records for

each and every keyword using the previous methods,

and then to join these records for different keywords to

compute the answers use the “INTERSECT” operator

Full-text Indexes:

Full-text indexes CONTAINS command) to find

records matching the first m complete keywords, and

then use our methods to find records matching the last

prefix keyword. Lastly, we join the results. These two

methods cannot use the precomputed results and may

lead to low performance. To solve this problem we

used Word level incremental computation

4.2.2 Word-Level Incremental Computation

We used previously generated results to incrementally

answer a query. Consider a user has typed in a query Q

with keywords , .. , we create a temporary

table CQ to cache the record ids of query Q. If the user

types in a new keyword wmþ1 and submits a new query

Q
‟
 with keywords , .. .We use

temporary table CQ to incrementally answer the new

query.

As an example, we focus on the method that uses the

prefix table and inverted-index table. As contains

all results for query Q, we check whether the records in

 contain keywords with the prefix of new

query Q
‟
. We issue the following SQL query to answer

keyword query Q
‟
 using :

SELECT T * FROM , , T

WHERE .prefix = “ ” AND

 . ukid ≥ .kid AND .lkid ≤ .kid AND

 .rid = :rid AND .rid = T.rid.

In Fuzzy search as an example, we can consider the

character-level incremental method. We compute

 first by using the character-level incremental

method for the new keyword wmþ1, and then use ST
wmþ1

to answer the query. Based on the temporary table ,

we use the following SQL query to answer

SELECT T: FROM
 , , , , T.

WHERE
 .prefix = .prefix AND

 .ukid .kid AND .lkid . kid AND

 .rid = .rid AND .rid = T.rid.

If the user modifies the keyword of query Q to

 and submits a query with keywords

 , .. ,
 , we can use the cached result of

query , .. to answer the new query using

the above method. Similarly, if The user arbitrarily

modifies the query, we can easily extend this method to

answer the new query.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 224

Figure 3. Incrementally computing first-N answers

VI. EXPERIMENTAL STUDY

We implemented the proposed methods on real

“DBLP” data set . It included more than 2 million

computer science publications. We are generating a

Log file which gives us the last used technique in the

search performed which gives us the time and space

required for producing the results example,

Fuzzy-Index-UDF - TIME(ms): 782 and SPACE:

1082456

We used a Windows 10 machine with an Intel Core i3-

processor (4005U 1.70 GHz and 4 GB memory). We

used the data base SQL Server 2014 Management

Studio.

VII. RESULTS

Wildcard Search using Fuzzy Autocompletion

For Single keyword

Single-keyword queries. We first evaluated the

performance of different methods to compute similar

keywords of single-keyword queries. We implemented

four methods:

1. using No Index UDF,

2. using Index UDF

3. using the gram-based method (called “Gram”) ,

4. using the neighborhood-generation-based method

(called “NGB”);

Figure 2. Graph of Single keyword Search –Simple

Fuzzy vs Wilcard using Fuzzy Autocompletion

So here are the Comparison of the simple fuzzy search

and Wildcard with Fuzzy Autocompletion . The

performance time is same but the memory utilized by

Wildcard is less.

Wildcard Search using Fuzzy Autocompletion

For Multi keyword

Multikeyword queries.

For multikeyword we used three different methods

1.Intersect Operator

2.Full Text Indexes

3.Word Level Incremental

So here are the Comparison of the simple fuzzy search

and our technique Wildcard with Fuzzy

Autocompletion

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 225

 Figure 3. Multi keyword search Graph of Wildcard

Fuzzy Autocompletion vs Simple Fuzzy

We can see that the memory utilized by our proposed is

less than the simple fuzzy and UDF perform better than

the other technique.

VIII. DATA UPDATES

We tested the cost of updates on the DBLP data set.

We first built indexes for 1.5 million records, and then

inserted 10,000 records at each time. We compared the

performance of the different methods on inserting

207792 records. It took more than 40 seconds to

reindex the data, while our incremental-indexing

method only took 0.5 seconds.

Summary. 1) In order to achieve a high speed, we have

to rely on index-based methods. 2) The approach using

inverted-index tables and the prefix tables can support

prefix, fuzzy search, and achieve the best performance

among all these methods and outperform the built-in

methods in SQL Server and Oracle. 3) Our SQL-based

method can achieve a high interactive speed and scale

well.

IX. CONCLUSION

Keyword search in different scenarios enables

information discovery without requiring from the user

to know the schema of the database. With use of Fuzzy

autocompletion we get the resultant answer in less time

as compared with Simple Fuzzy. Undergoing with the

techniques we get a conclusion that Wildcard method

when combined with Fuzzy autocompletion method on

different search techniques reduces the memory

required for storing the data. We enhanced the existing

methods of Fuzzy and developed a novel approach of

Wildcard using Fuzzy Autocompletion which performs

very well by reducing time and memory required and

give more precise results.

X. REFERENCES

[1]. A. Nandi and H.V. Jagadish, “Effective Phrase

Prediction,” Proc.33rd Int‟l Conf. Very Large

Data Bases (VLDB ‟07), pp. 219-230, 2007.

[2]. H. Bast, A. Chitea, F.M. Suchanek, and I. Weber,

“ESTER: Efficient Search on Text, Entities, and

Relations,” Proc. 30th Ann. Int‟l ACM SIGIR

Conf. Research and Development in Information

Retrieval (SIGIR ‟07), pp. 671-678, 2007.

[3]. H. Bast and I. Weber, “Type Less, Find More:

Fast Autocompletion Search with a Succinct

Index,” Proc. 29th Ann. Int‟l ACM SIGIR Conf.

Research and Development in Information

Retrieval (SIGIR ‟06), pp. 364-371, 2006.

[4]. S. Ji, G. Li, C. Li, and J. Feng, “Efficient

Interactive Fuzzy Keyword Search,” Proc. 18th

ACM SIGMOD Int‟l Conf. World Wide Web

(WWW), pp. 371-380, 2009.

[5]. S. Chaudhuri and R. Kaushik, “Extending

Autocompletion to Tolerate Errors,” Proc. 35th

ACM SIGMOD Int‟l Conf. Management of Data

(SIGMOD ‟09), pp. 433-439, 2009.

[6]. G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-

Ahead Search on Relational Data: A Tastier

Approach,” Proc. 35th ACM SIGMOD Int‟l

Conf. Management of Data (SIGMOD ‟09), pp.

695-706, 2009.

[7]. L. Qin, J.X. Yu, and L. Chang, “Keyword Search

in Data Bases: The Power of Rdbms,” Proc. 35th

ACM SIGMOD Int‟l Conf. Management of Data

(SIGMOD ‟09), pp. 681-694, 2009.

[8]. G. Li, J. Fan, H. Wu, J. Wang, and J. Feng,

“Dbease: Making Data Bases User-Friendly and

Easily Accessible,” Proc. Conf. Innovative Data

Systems Research (CIDR), pp. 45-56, 2011.

[9]. L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N.

Koudas, S.Muthukrishnan, and D. Srivastava,

“Approximate String Joins in a Data Base

(Almost) for Free,” Proc. 27th Int‟l Conf. Very

Large Data Bases (VLDB ‟01), pp. 491-500,

2001.

[10]. S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor,

V. Narasayya, and T. Vassilakis, “Data Cleaning

in Microsoft SQL Server 2005,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data

(SIGMOD ‟05), pp. 918-920, 2005.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com 226

[11]. S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V.

Ganti, “Scalable Ad-Hoc Entity Extraction from

Text Collections,” Proc. VLDB Endowment, vol.

1, no. 1, pp. 945-957, 2008.

[12]. G. Li, J. Feng, X. Zhou, and J. Wang, “Providing

Built-in Keyword Search Capabilities in Rdbms,”

VLDB J., vol. 20, no. 1, pp. 1-19, 2011.

[13]. G. Li, J. Feng and Chen Li,” Supporting Search-

As-You-Type Using SQL in Databases,” IEEE

transactions on knowledge and data engineering,

vol. 25, no. 2, february 2013

[14]. E. Ukkonen, “Finding Approximate Patterns in

Strings,” J. Algorithms, vol. 6, no. 1, pp. 132-

137, 1985.

[15]. http://dblp.uni-trier.de/

[16]. http://www.dustindiaz.com/autocomplete-fuzzy-

matching

[17]. http://en.wikipedia.org/wiki/Wildcard_character

[18]. http://www.w3schools.com/sql/sql_wildcards.asp

[19]. http://www.youtube.com

