
CSEIT1723210 | Received : 21 May 2017 | Accepted : 31 May 2017 | May-June-2017 [(2)3: 642-645]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

642

Smart Email Notifier Using Supervised Learning
Amey Bahulkar, Denny Sam, S. S. Pawar

Sinhgad Academy of Engineering, Kondhwa, Maharashtra, India

ABSTRACT

Communication via email is surely the most common and important aspect of a professional life and oftentimes our

inbox is inundated with worthless emails. Various studies have shown that interruptions due to email usage have a

negative impact on productivity thus there is a strong need of an intelligent system that could notify the user only

when an important email arrives so This paper focuses on the applicability of machine learning to answer a simple

question: is an incoming email worthy enough of user's time? To answer this question we have used two ML models

namely, Multinominal Naive Bayes and Support Vector Machines. In addition, this project aims to use the learned

models to build a real-time email notifier software that will estimate whether a received email is worth notifying the

user.

Keywords: Supervised Learning, Naïve Bayes, Support Vector Machines, TF-IDF, python, .NET.

I. INTRODUCTION

Oftentimes, we are disturbed and interrupted by the

notification of a new email arriving. Should we break

away from our crucial task to read it or not? Ideally, we

would only accept the disturbance to our work only if

said email requires an urgent reply. Our goal is to

model various features extracted from email data set

using multinomial naive Bayes and SVM classifiers to

determine which feature is most effective at predicting

whether an email requires a response. This project

explores the details of which email features provide the

most useful information in terms of predicting whether

a received email is worthy of user's time This paper

aims at developing a mail client that works on the

learned model and intelligently notifies the user

depending on the nature of the incoming email. In

section 2 we discuss in detail about the data collection

process that resulted in the formation of training and

test data. In section 3 we discuss the ML models that

we used. In section 4 we train our models on the data

and present the results. In Section 5 the results are

discussed and conclusions are presented. In section 6

we describe how the learned models were used to

develop a real time software. Finally, in section 7 we

discuss further directions that the project could take.

II. MATERIALS AND METHODS

A significant amount of time was spent on data

preprocessing and manipulation as the raw data was not

of any use. We used a Python script that is capable of

accessing email. The program iterates through all the

received email in the local Gmail account within a

specified time period and populates various data

structures that allow easy access to the source data for

the features with which we are interested in

experimenting[2]. The emails that we extracted from

our inbox were of little use as it contained way more

social networking emails than professional and

important emails. To overcome this problem we also

used the Enron email dataset to supplement our

dataset[6]. Preparing the dataset resulted into a feature

matrix containing a row for each email, describing its

features like subject, body, to, etc.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 643

Figure 1: Features and their associated reference

names.

2.1 Raw Features

The body feature was extracted from the BODY and

the subject feature was extracted from the SUBJECT

field. These fields were processed to make them

punctuation-free. The last three raw features extracted

were sourced from the TO, CC and FROM fields.

Column i for each email in these feature matrices was a

binary feature corresponding to whether or not the

person at index i in the associated person dictionary

was present in the respective field of the email i.e. a

feature vector.

2.2 Derived Features

Even if the features are cleaned and properly

preprocessed, they are often inefficient at the task that

we want to do. The reason behind this is that the words

like “is“, “the”, “and” etc. Are more common than

more important and rare words like names or places.

This leads to inefficient results. To overcome this we

developed TF-IDF of the features[5]. In addition, we

also consider the exclusivity of the email, i.e. if a user

is one of the two recipients of the email then the email

is worthy of a reply and an email which is sent to 50

recipients may not require a reply. This information

about the recipients is collected from the To and CC

fields. As we will see, these derived features tend to be

efficient for the computations and give more reliable

results. The derived features are shown in figure 2.

Figure 2 : Derived features and their associated

reference names.

2.3 Models

Multinomial naive Bayes was selected as the initial

model due to its very simple implementation, lack of

complex, empirically determined model parameters,

and reasonable performance on text classification

problems. SVM was selected so as to possibly fit a far

more complex decision boundary (when using a non-

linear kernels), thus giving a richer model. Additionally,

a large amount of email history is available and SVM is

better able to take the advantage of the additional data

points in terms of providing better predictive accuracy.

The metrics used to explore the performance of these

various features are the classification errors and the F1

score. The F1 score attempts to provide a good measure

of the models’ accuracy by taking into account the

models precision and recall. A F1 score of 1 indicates

the model perfectly classifies the given data. The F1

score is very sensitive to the number of false positives

and false negatives relative to the true number of

positives and negatives, respectively, giving a powerful

indicator of model success even in imbalanced data

sets[4]. Formula for the F1 score is given in figure 3.

Figure 3: The F1 score equation.

F1 score is a good indicator of the efficiency of the

model when the dataset is imbalanced.

III. RESULTS

In this section, we discuss the two models trained and

their results in detail. We first trained the MNB and ran

a cross-validation. Then we did the same on SVM

model. For both of the below models, we ran k-fold

cross validation with k = 10 on the train data and test

data. The error metrics reported for are averaged over

all 10 folds.

3.1 Naive Bayes

Multinomial naive Bayes was run against each feature

to determine each feature's value. The accuracy of this

model fluctuated with different feature set and with the

most important features the accuracy came out to be

90%. For the rest of this paper, we will be focused on

the F1 score. The confusion matrix of MNB is shown

below.

Figure 4: Confusion matrix on training set.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 644

MNB behaves similarly on the body, subject, and

subjecttfidf features with the most valuable model

obtained coming from either the subjecttfidf or

bodytfidf features. The to, cc, and from features were

practically useless as they resulted in a model with

training and test F1 scores below ~0.2 for all data sizes.

Interestingly, the only feature on which MNB was able

to decently model the training set was bodytfidf.

Confusion matrix on the test data set is shown below.

Figure 5: Confusion matrix on Test set.

It was observed that other than body and bodytfidf, all

other features were fruitless as they contained very

little information to predict the output.

3.2 SVM

Next, we implemented SVM against each feature. We

used the C-SVM implementation of SVM present

LIBSVM for Matlab[1]. The SVM model didn't

perform exceptionally better than MNB. The accuracy

of the SVM was almost same as of MNB. SVM, as

discussed above performed better on derived features

than the raw features.[3] Overall, SVM didn't have

any significant change in the F1 score and performed

equivalently to MNB and the features performed

comparatively well with subject, to, and subjecttfidf

being the best with obtaining stable F1 scores on the

test set between 0.3 and 0.4 for the data sets.

Surprisingly, SVM didn't perform exceptionally better

than MNB as the F1 score wasn't improved much.

IV. DISCUSSION

Altogether, the ML models performed a good job in

predicting the nature of email recieved. The overall

problem that significantly affected this project was the

high bias error associated with the majority of the

model feature pairings and lack of diversity in the

derived dataset which lead to significant under fitting

and inability to adequately fit even the training data.

Even though the models did perform well on some

features, they failed to perform efficiently on other

features. We believe that the model will perform better

if we use the ensemble techniques and diverse data.

Furthermore, the lack of complete dataset also affected

the performance of the model. Specifically, the

following aspects of the problem were not captured

appropriately in the features: (1) Only 1 person within a

role or team needs to provide a response. Responses

from those "equivalent" people should be included in

the positive class. (2) Responses can be sent over

different media. In our day-to-day life, it is common to

interact with someone via instant message after

receiving a critical email rather than emailing a reply.

Alternatively, one might just go to their office rather

than sending a reply. (3) Multiple emails can be sent in

one thread and if an email is replied not immediately

prior, but several emails ago, which is not a scenario

that can be captured with our current approach.

Additionally, it's important to note that as people

switch projects and change what they are working on

over time, a model trained on various features 4-5

months ago might do a very poor job generalizing to

the current email sent now. So, a periodic learning of

the model is required for a proper working of the

software. This can be seen even in our data sets where

some features improved the performance of the model

over certain email inputs while others deteriorated it.

We believe that boosting techniques, ensemble

techniques will significantly improve the performance

of the model. In addition, a so called complete dataset

will also improve the accuracy of the models.

Figure 6: User interface(snapshot) of the software.

V. CONCLUSION

Considering real-world application point of view, we

developed a real-time software based on our learned

models on Windows WPF platform. The software has

two main elements: ML models and imapx[7] package.

The imapx package provided most of the required

functionality like real-time mail update, email retrieval,

etc,. In addition, IronPython[8] module was used to

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 645

facilitate the integration of python and c#. The working

of the developed software is simple, when an email is

received it is first sent to the learned models which

predicts whether it is an important email. If the

prediction is positive, the user is notified by a balloon

message which when clicked redirects to the newly

received email. GUI of the software can be seen in

figure 6.

VI. REFERENCES

[1]. Chang, C.-C., and Lin, C.-J. LIB-SVM: A

Library for Support Vector Machines.

Department of Computer Science, National

Taiwan University, 2001.

[2]. Chaput, M. stemming 1.0.

https://pypi.python.org/pypi/stemming/1.0Feb.

2010. Python implementation of theporter2

stemming algorithm.

[3]. Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A

Practical Guide to Support Vector

Classsification. Department of Computer

Science, National Taiwan University, Taipei,

Taiwan,2003.

[4]. Wikipedia. F1 score.

http://en.wikipedia.org/wiki/F1_score. Wikipedia

page for the F1 score.

[5]. Wikipedia. tf-idf.

http://en.wikipedia.org/wiki/Tf%E2%80%93idf.

Wikipedia page for the TF-IDF metric.

[6]. https://www.kaggle.com/wcukierski/enron-

email-dataset

[7]. A cross-platform library for .NET

http://imapx.org

[8]. The IronPython package http://ironpython.net

