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ABSTRACT 
 

Communication via email is surely the most common and important aspect of a professional life and oftentimes our 

inbox is inundated with worthless emails. Various studies have shown that interruptions due to email usage have a 

negative impact on productivity thus there is a strong need of an intelligent system that could notify the user only 

when an important email arrives so  This paper focuses on the applicability of machine learning to answer a simple 

question: is an incoming email worthy enough of user's time? To answer this question we have used two ML models 

namely, Multinominal Naive Bayes and Support Vector Machines. In addition, this project aims to use the learned 

models to build a real-time email notifier software that will estimate whether a received email is worth notifying the 

user. 
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I. INTRODUCTION 

 
Oftentimes, we are disturbed and interrupted by the 

notification of a new email arriving. Should we break 

away from our crucial task to read it or not? Ideally, we 

would only accept the disturbance to our work only if 

said email requires an urgent reply. Our goal is to 

model various features extracted from email data set 

using multinomial naive Bayes and SVM classifiers to 

determine which feature is most effective at predicting 

whether an email requires a response. This project 

explores the details of which email features provide the 

most useful information in terms of predicting whether 

a received email is worthy of user's time This paper 

aims at developing a mail client that works on the 

learned model and intelligently notifies the user 

depending on the nature of the incoming email. In 

section 2 we discuss in detail about the data collection 

process that resulted in the formation of training and 

test data. In section 3 we discuss the ML models that 

we used. In section 4 we train our models on the data 

and present the results. In Section 5 the results are 

discussed and conclusions are presented. In section 6 

we describe how the learned models were used to 

develop a real time software. Finally, in section 7 we 

discuss further directions that the project could take. 

 

 

II. MATERIALS AND METHODS 

 

A significant amount of time was spent on data 

preprocessing and manipulation as the raw data was not 

of any use. We used a Python script that is capable of 

accessing email. The program iterates through all the 

received email in the local Gmail account within a 

specified time period and populates various data 

structures that allow easy access to the source data for 

the features with which we are interested in 

experimenting[2]. The emails that we extracted from 

our inbox were of little use as it contained way more 

social networking emails than professional and 

important emails. To overcome this problem we also 

used the Enron email dataset to supplement our 

dataset[6]. Preparing the dataset resulted into a feature 

matrix containing a row for each email, describing its 

features like subject, body, to, etc.  
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Figure 1: Features and their associated reference 

names. 

 

2.1 Raw Features 

 

The body feature was extracted from the BODY and 

the subject feature was extracted from the SUBJECT 

field. These fields were processed to make them 

punctuation-free. The last three raw features extracted 

were sourced from the TO, CC and FROM fields. 

Column i for each email in these feature matrices was a 

binary feature corresponding to whether or not the 

person at index i in the associated person dictionary 

was present in the respective field of the email i.e. a 

feature vector. 

 

2.2 Derived Features 

 

Even if the features are cleaned and properly 

preprocessed, they are often inefficient at the task that 

we want to do. The reason behind this is that the words 

like “is“, “the”, “and” etc. Are more common than 

more important and rare words like names or places. 

This leads to inefficient results. To overcome this we 

developed TF-IDF of the features[5]. In addition, we 

also consider the exclusivity of the email, i.e. if a user 

is one of the two recipients of the email then the email 

is worthy of a reply and an email which is sent to 50 

recipients may not require a reply. This information 

about the recipients is collected from the To and CC 

fields. As we will see, these derived features tend to be 

efficient for the computations and give more reliable 

results. The derived features are shown in figure 2. 

 

 
 

Figure 2 : Derived features and their associated 

reference names. 

 

2.3 Models 

 

Multinomial naive Bayes was selected as the initial 

model due to its very simple implementation, lack of 

complex, empirically determined model parameters, 

and reasonable performance on text classification 

problems. SVM was selected so as to possibly fit a far 

more complex decision boundary (when using a non-

linear kernels), thus giving a richer model. Additionally, 

a large amount of email history is available and SVM is 

better able to take the advantage of the additional data 

points in terms of providing better predictive accuracy. 

The metrics used to explore the performance of these 

various features are the classification errors and the F1 

score. The F1 score attempts to provide a good measure 

of the models’ accuracy by taking into account the 

models precision and recall. A F1 score of 1 indicates 

the model perfectly classifies the given data. The F1 

score is very sensitive to the number of false positives 

and false negatives relative to the true number of 

positives and negatives, respectively, giving a powerful 

indicator of model success even in imbalanced data 

sets[4]. Formula for the F1 score is given in figure 3. 

 

 
 

Figure 3: The F1 score equation. 

 

F1 score is a good indicator of the efficiency of the 

model when the dataset is imbalanced. 

 

III. RESULTS 

 

In this section, we discuss the two models trained and 

their results in detail. We first trained the MNB and ran 

a cross-validation. Then we did the same on SVM 

model. For both of the below models, we ran k-fold 

cross validation with k = 10 on the train data and test 

data. The error metrics reported for are averaged over 

all 10 folds. 

 

3.1 Naive Bayes 

 

Multinomial naive Bayes was run against each feature 

to determine each feature's value. The accuracy of this 

model fluctuated with different feature set and with the 

most important features the accuracy came out to be 

90%. For the rest of this paper, we will be focused on 

the F1 score.  The confusion matrix of MNB is shown 

below. 

 

 
 

Figure 4: Confusion matrix on training set. 
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MNB behaves similarly on the body, subject, and 

subjecttfidf features with the most valuable model 

obtained coming from either the subjecttfidf or 

bodytfidf features. The to, cc, and from features were 

practically useless as they resulted in a model with 

training and test F1 scores below ~0.2 for all data sizes. 

Interestingly, the only feature on which MNB was able 

to decently model the training set was bodytfidf. 

Confusion matrix on the test data set is shown below.  

 

 
 

Figure 5: Confusion matrix on Test set. 

 

It was observed that other than body and bodytfidf, all 

other features were fruitless as they contained very 

little information to predict the output. 

 

3.2 SVM 

 

Next, we implemented SVM against each feature. We 

used the C-SVM implementation of SVM present 

LIBSVM for Matlab[1]. The SVM model didn't 

perform exceptionally better than MNB. The accuracy 

of the SVM was almost same as of MNB. SVM, as 

discussed above performed better on derived features 

than the raw features.[3] Overall, SVM  didn't have 

any significant change in the F1 score and performed 

equivalently to MNB and the  features performed 

comparatively well with subject, to, and subjecttfidf 

being the best with obtaining stable F1 scores on the 

test set between 0.3 and 0.4 for the data sets. 

Surprisingly, SVM didn't perform exceptionally better 

than MNB as the F1 score wasn't improved much.  

 

IV. DISCUSSION 
 

Altogether, the ML models performed a good job in 

predicting the nature of email recieved. The overall 

problem that significantly affected this project was the 

high bias error associated with the majority of the 

model feature pairings and lack of diversity in the 

derived dataset which lead to significant under fitting 

and inability to adequately fit even the training data. 

Even though the models did perform well on some 

features, they failed to perform efficiently on other 

features. We believe that the model will perform better 

if we use the ensemble techniques and diverse data.  

Furthermore, the lack of complete dataset also affected 

the performance of the model. Specifically, the 

following aspects of the problem were not captured 

appropriately in the features: (1) Only 1 person within a 

role or team needs to provide a response. Responses 

from those "equivalent" people should be included in 

the positive class. (2) Responses can be sent over 

different media. In our day-to-day life, it is common to 

interact with someone via instant message after 

receiving a critical email rather than emailing a reply. 

Alternatively, one might just go to their office rather 

than sending a reply. (3) Multiple emails can be sent in 

one thread and if an email is replied not immediately 

prior, but several emails ago, which is not a scenario 

that can be captured with our current approach. 

Additionally, it's important to note that as people 

switch projects and change what they are working on 

over time, a model trained on various features 4-5 

months ago might do a very poor job generalizing to 

the current email sent now. So, a periodic learning of 

the model is required for a proper working of the 

software. This can be seen even in our data sets where 

some features improved the performance of the model 

over certain email inputs while others deteriorated it. 

We believe that boosting techniques, ensemble 

techniques will significantly improve the performance 

of the model. In addition, a so called complete dataset 

will also improve the accuracy of the models. 

 

 
 

Figure 6: User interface(snapshot) of the software. 

 

V. CONCLUSION 
 

Considering real-world application point of view, we 

developed a real-time software based on our learned 

models on Windows WPF platform. The software has 

two main elements: ML models and imapx[7] package. 

The imapx package provided most of the required 

functionality like real-time mail update, email retrieval, 

etc,. In addition, IronPython[8] module was used to 
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facilitate the integration of python and c#. The working 

of the developed software is simple, when an email is 

received it is first sent to the learned models which 

predicts whether it is an important email. If the 

prediction is positive, the user is notified by a balloon 

message which when clicked redirects to the newly 

received email. GUI of the software can be seen in 

figure 6. 
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