
CSEIT1723223 | Received : 21 May 2017 | Accepted : 31 May 2017 | May-June-2017 [(2)3: 698-701]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

698

Elixir: A Functional Programming

Sourabh Dadhich, Varun Dadhich, Avishek Kumar

Information Technology, MCKV institute of engineering, Howrah, West Bengal, India

ABSTRACT

The rise of a new programming language provides the need to contrast its contribution in field of programming. The

functional programming paradigm was explicitly created to support a pure functional approach to problem solving.

Functional programming promotes a coding style that helps developers write code that is short, fast, and

maintainable. Functional programming is a form of declarative programming .In this article, we are going to show

the advantages and disadvantages of a particular functional programming called Elixir .We compare the language

Elixir with different languages genres. Eg . Procedural, OOP.

Keywords: Functional Programming, Erlang, Tuples, Modules

I. INTRODUCTION

Elixir is the functional programming language created

by Jose valim during, an R&D project of Plataformatec

and it was presented in 2011. Elixir is great for

writing highly concurrent web applications because it

supports meta programming via macros polymorphism

via protocols Elixir is a dynamic, functional language

designed for building scalable and maintainable

applications. Elixir leverages the Erlang VM, known

for running low-latency, distributed and fault-tolerant

systems, while also being successfully used in web

development and the embedded software domain.

Elixir was launched to offer an alternative to

Erlang because this has features which commonly

evolved from it was created and has a greater

difference with procedural and object-oriented

programming. However, prominent programming

languages which support functional programming such

as Common Lisp, Scheme, Clojure,

Wolfram Language (also known as Mathematica),

Racket, Erlang, OCaml, Haskell, and F# have been

used in industrial and commercial applications by a

wide variety of organizations. Elixir is inspired as per

the other functional programming languages as

mentioned earlier. The elixir’s syntax is quite different

from other because it does not support pointers to such

an extent. For instance, In elixir, a function can be

passed as an argument to another function but in

programming language like C/C++, a function pointer

referring to a function can be passed to a function that

can invoke the external function through dereference.

That’s why function pointer have a lot of limitation.

Due to these facts, it is necessary to a study about elixir

to check if elixir can make a place in field of functional

programming.

II. LANGUAGE CHARACTERISTICS

Platform features:

A. Scalability

All Elixir code runs inside lightweight threads of

execution (called processes) that are isolated and

exchange information via messages:

Current_process = self()

Spawn an Elixir process (not an operating

system one!)

spawn_link(fn ->

 send current_process, {:msg, "hello

world"}

end)

Block until the message is received

http://plataformatec.com.br/

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 699

receive do

 {:msg, contents} -> IO.puts contents

End

Due to their lightweight nature, it is not uncommon to

have hundreds of thousands of processes

running concurrently in the same machine. Isolation

allows processes to be garbage collected independently,

reducing system-wide pauses, and using all machine

resources as efficiently as possible (vertical

scaling).Processes are also able to communicate with

other processes running on different machines in the

same network. This provides the foundation for

distribution, allowing developers to coordinate work

across multiple nodes (horizontal scaling).

B. Fault-tolerance

The unavoidable truth about software running in

production is that things will go wrong .Even more

when we take network, file systems, and other third-

party resources into account. To cope with failures,

Elixir provides supervisors which describe how to

restart parts of your system when things go awry, going

back to a known initial state that is guaranteed to work:

1) import Supervisor.Spec

2) children = [

3) supervisor(TCP.Pool, []),

4) worker(TCP.Acceptor, [4040])

5)]

6)

7) Supervisor.start_link(children,

strategy: :one_for_one)

Language feature

A. Functional programming

Functional programming promotes a coding style that

helps developers write code that is short, fast, and

maintainable. For example, pattern matching allows

developers to easily destructure data and access its

contents:

%User{name: name, age: age} = User.get("John

Doe")

name #=> "John Doe"

When mixed with guards, pattern matching allows us to

elegantly match and assert specific conditions for some

code to execute:

8) def serve_drinks(%User{age: age}) when

age >= 21 do

9) # Code that serves drinks!

10) end

11) serve_drinks User.get("John Doe")

12) #=> Fails if the user is under 21

Tooling features

A. A growing ecosystem

Elixir ships with a great set of tools to ease

development. Mix is a build tool that allows you to

easily create projects, manage tasks, run tests and more:

$ mix new my_app

$ cd my_app

$ mix test

Finished in 0.04 seconds (0.04s on load,

0.00s on tests)

1 tests, 0 failures

B. Erlang compatible

Elixir runs on the Erlang VM giving developers

complete access to Erlang’s ecosystem, used by

companies like Heroku, WhatsApp, Klarna, Basho and

many more to build distributed, fault-tolerant

applications. An Elixir programmer can invoke any

Erlang function with no runtime cost:

iex> :crypto.hash(:md5, "Using crypto from

Erlang OTP")

<<192, 223, 75, 115, ...>>

III. WORKING WITH ELIXIR

A. Running code

Elixir has an interactive shell called iex. Compiling

Elixir code can be done with elixirc(which is similar to

Erlang’s erlc). Elixir also provides an executable

named elixir to run Elixir code. The module defined

above can be written in Elixir as:

module_name.ex

defmodule ModuleName do

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 700

 def hello do

 IO.puts "Hello World"

 end

end

However notice that in Elixir you don’t need to create a

file only to create a new module, Elixir modules can be

defined directly in the shell.

In Elixir, expressions are delimited by a line break or a

semicolon ;.

B. Variable names

Elixir allows you to assign to a variable more than

once. If you want to match against the value of a

previously assigned variable, you should use ^:

iex> a = 1

1

iex> a = 2

2

iex> ^a = 3

** (MatchError) no match of right hand side

value: 3

C. Data types

In Erlang, an atom is any identifier that starts with a

lowercase letter, e.g. ok, tuple, donut. Identifiers that start

with a capital letter are always treated as variable

names. Elixir, on the other hand, uses the former for

naming variables, and the latter are treated as atom

aliases. Atoms in Elixir always start with a colon :.

:im_an_atom

:me_too

im_a_var

x = 10

13) Module # this is called an atom alias;

it expands to :'Elixir.Module'

D. String

In Elixir, the word string means a UTF-8 binary and

there is a String module that works on such data. Elixir

also expects your source files to be UTF-8 encoded. On

the other hand, string in Erlang refers to char lists and

there is a :string module, that’s not UTF-8 aware and

works mostly with char lists.Elixir also supports

multiline strings (also called heredocs):

is_binary """

This is a binary

spanning several

lines.

"""

#=> true

E. Modules

Here we create a module named hello_module . In

it we define three functions, the first two are made

available for other modules to call via

the export directive at the top. It contains a list of

functions, each of which is written in the

format <function name>/<arity> . Arity

stands for the number of arguments.

defmodule HelloModule do

 # A "Hello world" function

 def some_fun do

 IO.puts "Hello world!"

 end

 # This one works only with lists

 def some_fun(list) when is_list(list) do

 IO.inspect list

 end

 # A private function

 defp priv do

 :secret_info

 end

end

F. First-class functions

Anonymous functions are first-class values, so

they can be passed as arguments to other

functions and also can serve as a return value.

There is a special syntax to allow named functions

be treated in the same manner.

defmodule Math do

 def square(x) do

 x * x

 end

end

G. Control flow

The case construct provides control flow based

purely on pattern matching.

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 701

case {x, y} do

 {:a, :b} -> :ok

 {:b, :c} -> :good

 other -> other

end

If:

test_fun = fn(x) ->

 cond do

 x > 10 ->

 :greater_than_ten

 x < 10 and x > 0 ->

 :less_than_ten_positive

 x < 0 or x === 0 ->

 :zero_or_negative

 true ->

 :exactly_ten

 end

end

H. Sending and receiving messages

pid = Kernel.self

send pid, {:hello}

receive do

 {:hello} -> :ok

 other -> other

after

 10 -> :timeout

end

IV. CONCLUSION

Elixir provides far better handling of UTF-8 strings out

of the box. It has improvements over OTP such as

Agents and GenEvent, and it has meta programming

/macros which is huge. Elixir has a better ecosystem of

tools and will continue to add features that improve

programmer productivity because that is a primary

design goal. It overcame all the demerits present in

Erlang. A lot of multinational tech companies are

working on elixir.eg. pinterest, 22cans, MOZ

puppet,discord, thoughtbot. Apart from this, Whatsapp

and facebook messenger works on elixir. So, definitely

there is not any question regarding the future of this

language.

V. REFERENCES

[1]. Simon St. Laurent & J. David Eisenberg,

“Atoms, Tuples, and Pattern Matching” in

Introducing Elixir, 1st ed. Sebastopol, USA.

[2]. http://elixir-lang.org

[3]. https://en.wikipedia.org/wiki/Elixir_(programmi

ng_language)

[4]. Davyd Thomas, Programming Elixir: 1.3 ,

ISBN 1680500538

[5]. https://github.com/sger/ElixirBooks

[6]. Benjamin Tan Wei Hao, The Little Elixir &

OTP Guidebook 1st Edition, Manning

Publications, ISBN 9781633430112.

[7]. Kenny Ballou, ”tuples and modules” in

Learning Elixir vol.1 , pp,27-44 ,Dec-2015.

[8]. http://alexott.net/en/fp/books/

[9]. https://github.com/chrismccord/elixirexpress/blo

b/master/basics/03basics.md

[10]. http://www.sitepoint.com/functional-

programming-pure-functions/

