
CSEIT172410 | Received : 10 July 2017 | Accepted : 13 July 2017 | July-August-2017 [(2)4: 66-73]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 4 | ISSN : 2456-3307

66

Comparative Analysis of Various Advance Resource Reservation

Algorithms In Grid Computing Environments
1
S. Sivakumar,

2
Dr. D. Maruthanayagam

1
Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu. India

2
Head/Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of

Arts & Science, Dharmapuri, Tamilnadu, India

ABSTRACT

Grid computing is an emerging paradigm for next generation distributed computing. The Grid is a highly dynamic

environment with servers coming on-line, going off-line, and with continuously varying demand from the clients.

Advance Reservation is a process of requesting resources for use at a specific time in the future. Common resources

whose usage can be reserved or requested are CPUs, memory, disk space and network bandwidth. Reservation for a

grid resource solves the above problem by allowing users to gain concurrent access to adequate resources for

applications to be executed. Reservation also guarantees the availability of resources to users and applications at the

required times. In this paper experiments analyzed and compared Average Waiting Time and Resource Idle Time

of four different Reservation techniques such as RSPB, ORR, TARR and DRR.

Keywords: Grid Computing, Resource, Reservation, RSPB, ORR, TARR and DRR

I. INTRODUCTION

Grid computing uses middleware to coordinate

dissimilar IT resources across a network, allowing them

to function as a virtual whole. The goal of a computing

grid, like that of the electrical grid, is to provide users

with access to the resources they need, when they need

them. Grids address two distinct but related goals:

providing remote access to IT assets, and aggregating

processing power. The most obvious resource included

in a grid is a processor, but grids also include sensors,

data-storage systems, applications, and other resources

[1].

Grid resource management (administration) plays a

substantial role while enabling the sharing and

coordinating of resources in grid computing

environments. Resource reservation is an important

element of the grid resource management. An advance

resource reservation is a scheduling object which

reserves a group of resources for a particular timeframe

for access only by a specified entity or group of entities.

Requests of advance reservation with fixed parameters

(Start time, End time and resource capability) may be

rejected due to instantaneous peaks of resource

utilization. Gaps between these peaks are too narrow for

additional requests to fit in. As a result, the call

acceptance rate of reservation would decrease

dramatically, and the performance of resource may be

reduced. In fact, many resource reservations for grid

applications do not need fixed parameters. In flexible

advance reservation, parameters can be modified

according to resource status in order to fill the gaps of

resources. Particular admission control algorithm for

this new type of reservation is also provided. Simulation

shows that it can improve performance of resource

reservation in terms of both call acceptance rate and

resource utilization [2].

The advance resource reservation technique makes it

possible to obtain a guaranteed start time for a job,

giving several advantages. It makes it possible to meet

deadlines for time-critical jobs and to coordinate the job

with other activities. The reservation protocol supports

two operations: requesting a reservation and releasing a

reservation. The reservation request contains the start

time and requested duration of the reservation and the

required number of CPUs. Upon receiving a reservation

request from the broker, the server on the resource

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 67

authorizes the requestor. After authorizing the user, the

job management plug-in of the server invokes a script to

request a reservation from the local scheduler. If the

scheduler accepts the request and creates the reservation,

the server returns a unique identifier and the start time

of the reservation to the broker. If no reservation can be

created, a message indicating failure is returned [3]. The

server saves the reservation identifier and a copy of the

user’s proxy for every successful reservation, enabling

subsequent authorization of the user who made the

reservation. To release a reservation, the broker uploads

a release message containing the reservation identifier

and the server confirms that the reservation is released.

Within larger combined distributed systems, the

efficient description of resources plays a significant role

in the performance of the computing system. However,

distributed resource allocations can also result in lower

resource utilization owing to the delay involved in

arbitration, the delay in taking up the agreed resources,

and the tentative allocation of resources during the

arbitration process. Resource oversubscription allows

for better utilization of resources in distributed systems,

however, this must be done in a controlled way to

ensure that the resulting allocations can be fulfilled.

II. ADVANCE RESERVATION ALGORITHMS

A. Reservation Scheduler With Priorities And Benefit

Functions (RSPB)

The [4] proposes and evaluates several algorithms for

supporting advance reservations in supercomputer

scheduling systems. These algorithms improve

traditional scheduling algorithms by unifying

scheduling traditional tasks from job queues with the

reservation requests. These advance reservations allow

users to request multiple resources simultaneously from

scheduling systems at specific times. However, [4]

allocates the “time slots” exclusively, i.e., the resources

are not reserved in a shared fashion by multiple clients

for the same duration. The applications are assumed to

operate on a “best effort” basis and the reservation

requests are assumed to have different priority than the

applications. These differences in priorities are

considered while the reservations and applications are

scheduled by the system. A Reservation Scheduler with

Priorities and Benefit Functions (RSPB) algorithm

schedules reservations while considering the relative

priorities of the various reservation requests. In RSPB,

each reservation request has an associated benefit

function that quantifies the “profit” for the client

accrued by the client by securing the resource at the

requested level. When the client is willing to negotiate

for lower service levels, it could indicate this by

providing a benefit function that shows a reduced but

positive benefit for lower resource levels. This facility

provided by the benefit functions removes the need for

negotiations when there is a resource scarcity. The

RSPB can be implemented on top of a CPU scheduler

such as the DSRT [5] or a QoS enhanced operating

system kernel such as QLinux [5].

Reservation Scheduling with Priorities and Benefit

Functions: The algorithm is based on the following

underlying assumptions. Once a request is granted

reservation, a contract for the reservation is signed

between the application and the system. The reservation

scheduler won’t examine the same request more than

once except when a QoS violation occurred. This

situation should be handled by a higher level QoS

broker that engages in renegotiation to establish another

reservation or a continuation of the current reservation.

Based on the operating policies, the reservation

scheduler may find another reservation or the

application may operate under best-effort conditions. In

this algorithm, each reservation request involves a

single resource, i.e., no co-reservation of resources is

considered here [6]. Figure 1 shows the outline of the

dynamic reservation scheduler. In this scheduler,

dynamically arriving requests are collected for a

predefined time interval to form a meta-request.

t=t0 ;; scheduler start time

Δt ;; inter-schedule time

while (true)

t = t + Δt;

while (current time < t)

get current request R;

add R to Rmeta

if (requested start time of R < t)

t = current time;

endif

endwhile

schedule Rmeta(Rmeta)

endwhile

Figure 1: Outline of dynamic reservation scheduler.

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 68

B. Optimal Resource Reservation

In the ORR (Optimal Resource Reservation) approach

the best fetch strategy is considered. During reservation,

if the slots requested are empty then they are reserved.

The conflict occurs only when the slots are not available.

Normally, the reservation denial is done in FCFS

approach. In TARR, the free slots are considered and

the reservation slots are provided rather than as a single

slot. For this purpose, in addition to the proposed start

time and finish time, the defer time (DT) is also

considered. The defer time is time until which the job

can be completed or considered for reservation. In

TARR approach, whenever a free slot is available it is

allotted as such. TARR necessitates more context

switching i.e., whenever a small chunk of time slice is

available, then that is reserved which requires more

process suspension and resumption. The entity resource

can be reserved for a period of time. After the elapse of

time the current process in execution need to undergo

process switching. The current status of the PCB

(Process Control Block) is stored. And the detail on

process to be resumed is retrieved. The new process

possesses the resource. The state transition or process

switching causes additional overhead. Hence in this

ORR the slicequeue and select slicequeue are

maintained [6].

Slice Queue: The reservation list of a resource

maintains the details on resource and also the job which

has reserved the respective resource. Figure 2 depicts

the resource list with reservation and empty slots.

Figure 2: Reservation List maintained by resources.

To find the empty slice initially the reservation list is

taken as input. The reservation list consists of the job id

which has reserved the resource with its period of res-

ervation i.e., its start time and finish time. The free slots

are identified. The difference between the finish time of

the previous reservation and the start time of the current

reservation is computed. If there exist any time then that

free slice is inserted into the slice queue.

Thus the slice queue maintains the free time slices. The

Slice queue consists of slice id, the slice start time (SST)

and the slice finish time (SFT) of a free slice. The

following algorithm inserts the free time slices into the

queue.

Algorithm

SliceQueue_Insert(reserve_list)

Begin

front = 0, rear = 0

for i = 0 to list_size - 1

timeslice =

starti+1 - finishi

if timeslice > 0

then

sst =finishi

sft = starti+1

slicequeue[rear]=

{sid,SST,SFT}

end if

end for

end

While considering the Figure 2, the free slots from 3 to

5 and from 10 to 16 are placed in the slice queue. The

Slice queue maintains all the free time slots. The time

slots are taken in first free slot available approach as in

TARR. The slice queue for Figure 2 is shown in Figure

3. This leads to more context switching which leads to

increase in overhead.

Figure 3: Slice Queue.

Select Slice Queue: After generating the slice queue,

the slice is searched for reservation. The slice queue

consists of all the free slices. But not all the free slices

can be used. Hence, the select slice queue algorithm

finds the slice which is more relevant to the required

slot. The algorithm considers the free slot and the Defer

Time (DT) to fetch the slots [7].

Algorithm

selectslicequeue(slicequeue)

begin

if slicequeue is empty then

return no_slice

else

for i = 0 to

size(slicequeue)

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 69

if (slicequeue.sft <

DT) then

insert

selectslicequeue(sid,sliceque

ue.sst,

slicequeue.sft)

end if

end for

end if

end

The selectslicequeue algorithm selects the slots only

when the time slice is within the defer time.

ORR Algorithm: The ORR algorithm finds the optimal

time slice from the selectslicequeue. For this the

algorithm takes in the job id of the process and the

selectslicequeue as input. And it returns the optimal

reservation of resource which is explained in following

algorithm. The selectslicequeue maintains the time

slices that can be reserved. The size function in ORR

returns the number of elements in the particular queue.

Initially the time required for the job is estimated. It is

computed by calculating the difference between the fin-

ish time of that job and the start time of the job. Then

they found value is set to zero. It is used as a flag

variable. If it is left as zero then it means that the

reservation is not made possible. Only when it is turned

to one the slot is available. The size of the free slice is

computed from the selectslicequeue. Since the

selectslicequeue maintains the slice start time and slice

finish time the difference between the two is computed

and maintained in slot variable. In this algorithm if the

first slice itself is in required size then it is allocated and

it is the optimized allotment as it doesn’t require the

context switching. Otherwise the slot is allotted and the

required time is reduced by the slot value. So that the

required time value contains the required time slot after

partial reservation. The found value indicates the

number of time slices considered for reservation for the

particular job id. The found value is compared with the

threshold value. If they found is greater than the

threshold value then the randomize function is called on

the selectslicequeue. This function shuffles the time

slices and the time slices are selected. When the

numbers of time slices are below the threshold value

then the selected slices are assigned for the job [8].

Algorithm ORR(JID, SelectSliceQueue)

begin

 requiredtime = FT – ST

 found = 0

for i = 1 to size(selectslicequeue)

 slot = selectslicequeue.sft -

selectslicequeue.sst

if (slot >= requiredtime && found =

0) then

 allot(sid,

selectslicequeue.sst,

selectslicequeue.sft)

return

else

 requiredtime = requiredtime –

slot

 allot(sid,selectslicequeue.ss

t,selectslicequeue.sft)

 found = found + 1

end if

end for

if found > T then

 randomize(selectslicequeue)

 ORR(JID, selectslicequeue)

else

assignslice(found)

return

end if

end

C. Time-Slice based Advance Resource Reservation

(TARR)

A new reservation scheme called Time-Slice based

Advance Resource Reservation (TARR) is proposed. In

this scheme, the reservation is done when the resource

is free. If the resource is already reserved during that

timeslot then the free the time slices can be used for the

reservation. This splits the resource utilization period,

i.e., whenever a free time-slice is available the resource

is reserved for that duration and the remaining is

deferred over a period of time where the free time slice

is available. In all the existing approaches only when

the resource is available in the specified start time and

finish time the reservation is done. Because of this even

if the resource is available for short duration than

expected then the resource is kept unused. The TARR

approach tries to remove this drawback by allowing the

usage of time-slices between the existing reservations

The Start, finish and defer time for using the resources

are given by the user while submitting a job for

execution. The start time and finish time are the

expected start and finish time for using the resources.

Sometimes it is not possible to reserve the resource at

the stipulated start and finish time. In such case the

reservation can be done until the defer time. Defer time

is the time until which the reservation can be postponed

[9].

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 70

TARR Algorithm

Algorithm TARR

if List is empty then

 no conflict found. Hence

accept the new reservation.

else

for i = 0 to List-Size -1 do

 Put i into templist if one of

the properties are true

 Startnew ≤ starti&&finishnew≥

finishi || Startnew ≤ finishi||

finishnew≤ finishi

end for

if templist is empty then

 no conflict found. Hence

accept this reservation.

else

 requiredtime = finishnew–

startnew

 balancereserve = requiredtime

for i = 1 to n

 timeslice = starti+1 -finishi

if timeslice> 0 then

 Put into

slicequeue_insert(id,sst,sft)

end if

end for

while (slicequeue&&balancereserve)

if sst ≥ Startnew then

 assign new reserve

 currentreserve=sft – sst

 Balancereserve = requiredtime

–currentreserve

end if

end while

end if

end if

Dynamic Resource Reservation (DRR)

There were various resource reservation schemes available as

FCFS (First Come First Served), reservation based on

negotiation, TARR (Time Slice based Advanced Resource

Reservation), ORR (Optimized Resource Reservation). In all

these methods, the reservations done are not checked for

utilization at any period of time. But there are chances of

unutilized reservation due to network failure, termination of

parent process, termination of current process etc., In the

DRR (Dynamic Resource Reservation) scheme, the resource

is checked for availability. If the resources are available then

it is allotted. If the resources are already reserved then it is

checked for the reservation requirement at that particular

point of time. If the reservation requirement is not required

then the current reserved slot is provided to the current

process [10].

Slice Queue: The free time slots are maintained in the

slicequeue for every resource upto a specified time.

Normally, the slicequeue used to have the start time and

finish time. Whenever the resource request is made then the

availability is checked in this slicequeue. If the time slot is

available then it is provided. If the time slot is not available

then the DRR algorithm can be used to get the required slice

from the slice queue depending upon the possibility. The

algorithm DRR shows the proposed reservation scheme. The

algorithm takes in the process id, start time (ST), finish time

(FT) and defer time (DT) as input.

Algorithm DRR (Process_id, ST, FT, DT)

begin

If the list is empty then

 No conflict found. Hence

accept the reservation.

else

 get_jobid(timeslot)

if isalive(jobid)

if isrequire(timeslot)

 return()

else

 allot(current_jobid,

timeslot)

end if

else

 allot(current_jobid,

timeslot)

end if

end if

end

If the reservation list is empty then it means that the resource

is free during the required time slot. Hence the reservation

can be done. When reservation is already available during the

time slot, then the job can be checked for the availability. The

isalive function returns whether the reserved job id is still

alive or not. If the reserved job is not alive then the slot is

available for the current reservation hence that can be allotted

for the current reservation. If the required time slot is

reserved then the isrequire function is called which

determines whether the reservation made is further required

or not. If it is not required then the time slot can be used for

the current reservation.

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 71

III. PERFORMANCE METRICS

There were various performance metrics that are considered

to evaluate the performance of the Reservation algorithms.

Here, The average waiting time and Resource Idle Time taken

as metrics for evaluation [10][11][12],

A) Average Waiting Time (AWT): The waiting time (WT)

of the reservations are computed. Sometimes the resources

are not available at the time of reservation requirement. But

the resources can be reserved within the deferred time. In that

case, the difference between the expected start time and the

actual reserved start time is the waiting time.

Waiting Time (WT) = Startreserve - Startnew

The Total Waiting Time (TWT) is computed as the sum of all

the waiting time at a specific point of time.

Total Waiting Time (TWT)= WT
1

size

i

Where size refers to the length of the reservation list at a

specific point of time. Then ,

AWT = TWT / No of Reservations

B) Resource Idle Time (RIT): The resources may be idle

even when the reservation request available. This happens

when the idle time does not fit into the allocation policy. Thus

TARR provides a better allocation policy, as even the time-

slices are used for reservation rather than allocating the entire

request as a single unit. The RIT is computed by applying the

below formula

RIT = Finishprevious – Startcurrent

When there exists a reservation request with a conflict. The

total resource idle time is computed by the following equation

 Total RIT =
1

size

i

 RIT

IV. COMPARATIVE ANALYSIS

To compare the Existing algorithms as RSPB, 0RR, TARR

and DRR in Two Grid Environments are considered. The

Expected start time (EST),Expected finish time (FT) and

Rescheduling time (RT) for 5 jobs fewer than 2 Grid

Environment are listed in table 1 and table 2. The table 1

depicts the reservation of Grid Environment 1 based on the

four different models with its Average waiting time and Grid

Resource idle time. The table 2 depicts the reservation of

Grid Environment 2 based on the four different models with

its Average waiting time and Grid Resource idle time.

Table 1: Reservation of Grid Environment 1

GRID ENVIRONMENT 1

Job

Allotment

EXPECTED

STARTING

TIME

EXPECTE

D

FINISHIN

G TIME

Average Waiting Time(AWT) Grid Resource Idle Time(RIT)

RES

CHE

DUL

E

TIM

E RSPB ORR TARR DRR RSPB ORR TARR DRR

Job1 0.25 7.56 5.41 5.24 4.8 3.69 5.16 4.99 4.55 3.44 7.81

Job2 0.59 8.52 6.71 6.54 6.1 4.99 6.12 5.95 5.51 4.4 9.11

Job3 1.25 9.57 8.42 8.25 7.81 6.7 7.17 7.0 6.56 5.45 10.82

Job4 1.55 10.24 9.39 9.22 8.78 7.67 7.84 7.67 7.23 6.12 11.79

Job5 2.08 10.59 10.27 10.1 9.66 8.55 8.19 8.02 7.58 6.47 12.67

Table 2: Reservation of Grid Environment 2

GRID ENVIRONMENT 2

Job

Allotment

EXPE

CTED

STAR

TING

TIME

EXPECTE

D

FINISHIN

G TIME

Average Waiting Time(AWT) Grid Resource Idle Time(RIT) RESCH

EDULE

TIME

RSPB ORR TARR DRR RSPB ORR TARR DRR

Job1 0.13 6.24 3.97 3.8 3.36 2.25 3.84 3.67 3.23 2.12 6.37

Job2 0.19 7.03 4.82 4.65 4.21 3.1 4.63 4.46 4.02 2.91 7.22

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 72

Job3 0.59 7.56 5.75 5.58 5.14 4.03 5.16 4.99 4.55 3.44 8.15

Job4 1.26 8.14 7 6.83 6.39 5.28 5.74 5.57 5.13 4.02 9.4

Job5 1.58 9.07 8.25 8.08 7.64 6.53 6.67 6.5 6.06 4.95 10.65

Figure 4: Comparison of Reservation process Average

Waiting Time (AWT) in Grid Environment1

Figure 5: Comparison of Reservation process Average

Waiting Time (AWT) in Grid Environment2

Figure 6: Comparison of Reservation process Resource Idle

Time (RIT) in Grid Environment1

 Figure 7: Comparison of Reservation process Resource Idle

Time (RIT) in Grid Environment2

V. CONCLUSION

Resource reservation provides a way through which the

resources are made readily available for the entire

execution of the process. This reduces the waiting time

which in turn reduces the execution time also. Two

parameters such as average waiting time and resource

idle time are considered for evaluation in all the

existing reservation techniques. Finally, the existing

reservation algorithm DRR provides better result when

compared with RSPB, ORR, and TARR reservation

algorithms.

VI. REFERENCES

[1]. A. W. Mu'alem and D. G. Feitelson. Utilization,

Predictability, Workloads, and User Runtime

Estimates in Scheduling the IBM SP2 with

Backfilling. IEEE transactions on Parallel and

Distributed Systems, 12(6):529{543, 2001}.

[2]. J. MacLaren, editor. Advance Reservations: State

of the Art (draft). GWD-I, Global Grid Forum

(GGF), June 2003. http://www.ggf.org. 69

[3]. W. Smith, I. Foster, and V. Taylor. Scheduling

with advanced reservations. In Proceedings of the

International Parallel and Distributed Processing

Symposium (IPDPS'00), Cancun, Mexico, May

1{5, 2000}.

0

2

4

6

8

10

12

1 2 3 4 5A
ve

ra
ag

e
 W

ai
ti

n
g

Ti
m

e
(

Se
c)

Jobs Allotment

RSPB

ORR

TARR

DRR

0

2

4

6

8

10

1 2 3 4 5

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

(S
e

c)

Jobs Allotment

RSPB

ORR

TARR

DRR

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

R
e

so
u

rc
e

 Id
le

 T
im

e
(

Se
c)

Jobs Allotment

RSPB

ORR

TARR

DRR

0

1

2

3

4

5

6

7

1 2 3 4 5

R
e

so
u

rs
e

 Id
le

 T
im

e
(S

e
c)

Jobs Allotment

RSPB

ORR

TARR

DRR

http://www.ggf.org/

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com

 73

[4]. A. Schill, F. Breiter, and S. Kuhn. Design and

evaluation of an advance reservation protocol on

top of rsvp. In Proceedings of the IFIP

TC6/WG6.2 4th International Conference on

roadband Communications (BC'98), Stuttgart,

Germany, April 1998.

[5]. J. MacLaren (Ed.), Advance Reservations: State

of the Art (draft), GWD-I, Global Grid Forum

(GGF), June 2003 http://www.ggf.org

[6]. A. Roy and V. Sander, Advance Reservation

API, GFD-E.5, Scheduling Working Group,

Global Grid Forum (GGF), May 2002.

[7]. H. Chu and K. Nahrstedt, “A Soft Real Time

Scheduling Server in UNIX Operating

System,”European Workshop on Interactive

Distributed Multimedia Systems and

Telecommunication Services (IDMS '97), Sep.

1997.

[8]. P. Goyal, X. Guo, and H. M. Vin, “A

Hierarchical CPU Scheduler for Multimedia

Operating Systems,” 2nd Symposium on

Operating System Design and Implementation

(OSDI '96), Oct. 1996, pp. 107-122.

[9]. W. Smith, I. Foster, and V. Taylor, “Scheduling

with Advanced Reservations,” International

Parallel and Distributed Processing Symposium

(IPDPS ’00),May 2000.

[10]. S.Nirmala Devi and A.Pethalakshmi ORR:

Optimal Resource Reservation In Grid

Computing Environments, Indian Journal of

Science and Technology, Vol 9(48), DOI:

10.17485/ijst/2016/v9i48/102300, December

2016

[11]. S.Nirmala Devi and A.Pethalakshmi, “DRR:

Dynamic Resource Reservation in Grid

Computing”, International Journal of Computer

Applications (0975 – 8887) Volume 159 – No 6,

February 2017 27

[12]. S.Nirmala Devi and A.Pethalakshmi, TARR:

Time Slice based Advance Resource Reservation

in Grid Computing Environments, International

Journal of Computational Intelligence and

Informatics, Vol. 6: No. 1, June 2016

VII. AUTHORS PROFILE

S. Sivakumar received his M.Phil Degree

from Alagappa University, Karaikudi in the

year 2005. He has received his M.C.A

Degree from Periyar University, Salem in

the year 2001. He is working as Assistant

Professor, Department of Computer Science, PGP

College of Arts & Science, Namakkal, Tamilnadu,

India. He is pursuing his Ph.D Degree at at Sri Vijay

Vidyalaya College of Arts & Science (Affiliated

Periyar University),Dharmapuri, Tamilnadu, India. His

areas of interest include Grid Computing and Data

Mining.

Dr.D.Maruthanayagam received his

Ph.D Degree from Manonmanium

Sundaranar University, Tirunelveli in the

year 2014. He has received his M.Phil,

Degree from Bharathidasan University,

Trichy in the year 2005. He has received his M.C.A

Degree from Madras University, Chennai in the year

2000. He is working as HOD Cum Professor, PG &

Research Department of Computer Science, Sri Vijay

Vidyalaya College of Arts & Science, Dharmapuri,

Tamilnadu, India. He has 15 years of experience in

academic field. He has published 4 books, 23

International Journal papers and 28 papers in National

and International Conferences so far. His areas of

interest include Computer Networks, Grid Computing,

Cloud Computing and Mobile Computing.

http://www.ggf.org/

