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ABSTRACT 
 

Game theory is a field of applied mathematics for analysing complex interactions among entities. It is 

basically a collection of analytic tools that enables distributed decision process. Game theory (GT) 

provides insights into any economic, political, or social situation that involves individuals with different 

preferences. GT is used in economics, political science and biology to model competition and cooperation 

among entities, and the role of threats/penalties in long term relations. Contemporary social science is 

based on game theory, economics, and psychology in which mathematical logic is applied.  

Keywords :  Game theory, transferable utility, non-transferable utility, TU, Saad, NTU 

 

I. INTRODUCTION 

 
The formation of coalitions and non-coalitional or 

alliances is omnipresent in many applications. For 

example, in political games, parties, or individuals can 

form coalitions and non-coalitional for improving their 

voting power. Recently, computer science and 

engineering have been added to the list of scientific 

areas applying GT. While in optimization theory the 

goal is to optimize a single objective over one decision 

variable, game theory studies multi-agent decision 

problems. In social sciences and economics, the focus 

of game is the design of right motivations/payoffs; in 

engineering it comes to efficiency – how to design 

efficient decentralized schemes that take into account 

incentives. However, there are still similarities when 

applying game theory to different disciplines. A a 

measurement allocation framework for localization in 

wireless networks, based on the idea to allocate more 

measurements to the nodes which contribute more, 

mimics a capitalist society where the gains are mostly 

reinvested where more profit is expected. It also 

replicates the concept of natural selection in population 

genetics. In general, a game consists of a set of players 

(decision makers), while each player has its strategy, 

whereby utility (payoff) for each player measures its 

level of satisfaction. Each player’s objective is to 

maximize the expected value of its own payoff 

(Myerson, 1997). (Srivastava V.2005) proposed a 

mapping of network components to game components 

according to the following table: 1 

 

Network component coalitional and non-

coalitional  Game 

component 

Nodes Players 

Available adaptations Achievement set 

Performance metrics Utility purpose 

 

Table 1. Classification of coalitional and non-

coalitional games 

Game theory can be applied to communication 

networks from several aspects: at the physical layer, 

link layer and network layer. However, there a certain 

challenges when applying game theory principles to 

wireless networks. For example, GT assumes that the 

players act rationally, which does not exactly reflect 

real systems. Furthermore, realistic scenarios 

necessitate complex models, yet the main challenge is 
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to select the appropriate utility function, due to a lack 

of analytical models that would map each node’s 

available actions to higher layer metrics. 

 

Coalitional and non-coalitional games – background 

 

Coalitional and non-coalitional games in characteristic 

form are classified into two types based on the 

distributing of gains among users in a coalition and 

non-coalitional: 

 

i. A transferable utility (TU) game where the total 

gain achieved can be apportioned in any manner 

between the users in a coalition and non-

coalitional subject to feasibility constraints, and 

ii. A non-transferable utility (NTU) game where the 

apportioning strategies have additional 

constraints that prevent arbitrary apportioning. 

Each payoff is dependent on joint actions within 

coalition and non-coalitional. 

 

In TU games, the cooperation and non-cooperation 

possibilities of a game can be defined by a 

characteristic function v that assigns a value v(S) to 

every coalition and non-coalitional S. Here v(S) is 

called the value of coalition and non-coalitional S, and 

it characterizes the total amount of transferable utility 

that the members of S could gain without any help 

from the players outside of S. In general, we use the 

term coalition and non-coalitional structure to refer to 

any mathematical structure that describes which 

coalitions and non-coalitional (within the set of all 2n – 

1 possible coalitions) can effectively negotiate in a 

coalitional and non-coalitional game. 

 

Ѵ(        (     (   ; for all (    (    

  (    (      …….(1) 

 

In other words, a TU game is superadditivity if 

cooperation and non-cooperation is always rewarding. 

Thus, grand coalition and non-cooperation, i.e., the 

coalition comprising all sensors, is beneficial. The most 

notable solution concept for the coalition and non-

coalitional formation in superadditivity games is the 

core; other solutions include Shapley value, kernel, and 

Nucleolus.  

 

The superadditivity concept can be extended to NTU 

games, by: 

 

{ ((       
⁄    (    (       

  (   }  (   

     ……..(2) 

 

In case of TU games, goal is to find a coalition and 

non-coalitional structure that maximizes the total utility, 

while in NTU games it is the structure with Pareto 

optimal payoff distribution. A centralized approach can 

be used, but it is generally NP-complete. The reason is 

that finding an optimal partition requires iterating over 

all the partitions of the player set N. The number of 

partitions grows exponentially with the number of 

players in N. For example, for a game where N has 10 

elements, the number of partitions that a centralized 

approach has to go through is 115,975 (easily 

computed through the Bell number (Saad W. 2009c). 

Therefore, using a centralized approach for finding an 

optimal partition is, generally, computationally 

complex and not very practical. Nevertheless, many 

applications require the coalition centralized approach 

has initiated a growth in the coalition formation 

literature, with the goal to find low complexity and 

distributed algorithms for establishing coalitions 

centralized approach has initiated a growth in the 

coalition formation literature, with the goal to find low 

complexity and distributed algorithms for establishing 

coalitions. A novel classification of coalitional games 

has been proposed in (Saad W.2009c). Games are 

grouped into three types: canonical games, coalition 

formation games and coalitional graph games. Their 

properties are shown in the following table.. A novel 

classification of coalitional games has been proposed in 

(Saad W.2009c). Games are grouped into three types: 

canonical games, coalition formation games and 

coalitional graph games. Their properties are shown in 

the following table. formation process to take place in a 

distributed manner, so that the players have autonomy 

on the decision whether or not to join a coalition. 

Indeed, the complexity of the centralized approach has 

initiated a growth in the coalition formation literature, 

with the goal to find low complexity and distributed 

algorithms for establishing coalitions. A novel 

classification of coalitional games has been proposed in 

(Saad W.2009c). Games are grouped into three types: 

canonical games, coalition formation games and 

coalitional graph games, Non-coalitional graph game. 

Their properties are shown in the following table;2 

 

II. METHODS AND MATERIAL 

http://www.ijsrcseit.com/
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Table 2. Properties of coalitional Non-coalitional graph game theory 

 

Canonical form of game Formation of game Coalitional graph game Non-coalitional  graph 

game 

Grand coalition or non-

coalitional  is the optimal 

structure 

Resulting coalition or 

non-coalitional structure 

depends on gains and 

costs 

Interaction of players 

depends on 

communication graph 

structure 

Non-Interaction of players 

depends on 

communication graph 

structure 

Goal :stabilize the grand 

coalition or non-

coalitional 

Goal: form appropriate 

coalition or non-

coalitional structure 

Goal: stabilize grand 

coalitional or form 

network game into 

account communication 

graph 

Goal: stabilize grand non-

coalitional or form 

network game into 

account communication 

graph 

 

In this chapter we will focus on coalition and Non-

coalitional graph formation games. A generalized 

approach to coalition and Non-coalitional graph 

formation has been proposed in (Apt & Witzel, 2006). 

The notion of stable partition is used when there does 

not exist any other partition that would improve the 

total gain. In order to illustrate the coalition formation 

procedure, an abstract preference operator ► has been 

introduced, and coalition’s Non-coalition graph is 

being transformed using merge and split rules. 

 

1. Applications to communication networks 

 

From the communication networks perspective, there is 

the need for developing distributed and flexible 

wireless networks, where the units make independent 

and rational strategic decisions. In addition, low 

complexity distributed algorithms are required, to 

capably represent collaborative scenarios between 

network entities. Cooperative and Non-cooperative 

games have been mainly applied for applications such 

as spectrum sharing, power control or resource 

allocation – mainly settings that can be seen as 

competitive scenarios. On the other hand, cooperative 

game theory provides analytical tools to study the 

behaviour of rational players in cooperative and non-

cooperative scenarios. In particular, coalitional games 

show to be a very powerful tool for designing fair, 

efficient and robust cooperation and non-cooperation 

strategies in communication networks. In order to 

highlight an expanding application field, in the 

following section we will give some examples on use 

of cooperative and Non-cooperative game theory for  

 

communication networks, and specifically for 

localization purposes. 

 

Physical layer security has been studied via coalitional 

Non-coalition games in (Saad 2009a), (Saad W., 

2009b). In a distributed way, wireless users organize 

themselves into coalitions (see Figure 1.) while 

maximizing their secrecy capacity - maximum rate of 

secret information sent from a wireless node to its 

destination in the presence of eavesdroppers (Saad W 

2009a). This utility maximization is taking into 

consideration the costs occurring during information 

exchange. On the other hand, (Saad W2009b) 

introduces a cooperation and non-cooperation protocol 

for eavesdropper (attacker) cooperation. Here the utility 

function is formulated to capture the damage caused by 

the attackers, and the costs in terms of time spent for 

communication among the eavesdroppers. In both cases, 

independent disjoint coalitions will form in the network, 

as the grand coalition and non-coalition would involve 

various communication costs. 

 
Figure 1. Wireless users organized into coalitions 

 

(Mathur S 2006) and (Mathur S. 2008) consider 

coalition and non-coalition structures in   wireless 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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network where users are permitted to cooperate, while 

maximizing their own rates. Here both transmitter and 

receiver cooperation in an interference channel is 

studied. Several models have been analysed: a TU and 

an NTU model, and with perfect and partial 

cooperation and nom-cooperation. In (Mathur S., 2006), 

the feasibility and stability of the grand coalition and 

non-coalition for all cases was evaluated, while the 

work in (Mathur S, 2008) is focused on stable coalition 

and non-coalition structures. In (Saad W., et all, 2008) 

a game theoretical framework for virtual MIMO has 

been proposed, where single antenna transmitters self-

organize into coalitions and non-coalition. The utility 

function denotes the total achieved capacity, and also 

includes the power constraint to account for the costs. 

In (Hao X., et all, 2011) the multi-channel spectrum 

sensing problem is formulated as a coalitional game, 

where players are secondary users that cooperatively 

sense the licensed channels of primary users. The 

utility of each coalition reflects the sensing accuracy 

and energy efficiency. Distributed algorithms have 

been proposed to determine a stable coalition structure, 

maximizing the overall utility in the system. More 

game theory based solutions for spectrum sensing in 

cognitive radio have been proposed in (Khan Z, 2010) 

and (Saad W.2009c). 

 

A network-level study using coalition and non-

coalition formation has been performed in (Singh C., 

2012), considering a scenario where service providers 

are cooperating in order to enhance the usage of the 

available resources. Particularly, different providers 

may serve each other’s customers and thereby increase 

the throughput and reduce the overall energy 

consumption. The model supports multi-hop networks 

and is not limited to stationary users and fixed channel 

conditions. A cooperative and non-cooperative game 

theory based framework is used to determine optimal 

decisions and a rational basis for sharing the aggregate 

utility among providers. The optimal coalition and non-

coalition structure can be obtained by means of convex 

optimization Other applications of cooperative and 

non-cooperative game theory include packet 

forwarding in ad hoc networks,  distributed cooperative 

and non-cooperative source coding, routing problems, 

and localization algorithms, which will be more 

elaborated in the next chapter. 

 

2. Scenario 

 

We propose the use of cooperative non‐super additive 

games for modelling localization algorithms. As stated 

in the previous section, a typical localization process 

consists of the ranging phase, where nodes estimate the 

distances to their neighbours, and a second phase where 

nodes use the ranging information and the known 

anchor position to calculate their coordinates. In a 

dense network one can assume a large number of 

available anchor nodes. However, transmitting and 

processing all the obtainable information would 

consume immense power, without necessarily leading 

to better localization performance. This is due to the 

fact that not all the anchors provide reliable 

measurements, what leads to erroneous distance 

estimates. Furthermore, the geometry of selected 

reference nodes shows to have significant impact on 

localization accuracy, what will be extensively 

elaborated in our work. Assuming that at each time 

instant a target has several neighbouring anchor nodes 

in near vicinity, and different coalitions can be formed, 

the considered scenario is illustrated in Fig.2. 

 

 
Figure 2. (a).Scenario 

 

 
Figure 2. (b).Scenario 

 

We propose an algorithm for reference node selection 

based on coalitional games. We model the localization 

process as a cooperative and non-cooperative game, 

and formulate the corresponding utility function. We 

define the node selection optimization as one that 

maximizes the accuracy subject to constraints given by 

nodes’ limited processing capacity. Position estimates 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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are obtained using the linearized least squares 

algorithm (trilateration). 

 

3. Use of game theory in localization algorithms 

Recently cooperative and non-cooperative game theory 

has been applied in localization algorithms, mainly for 

modelling the cost-performance trade-off and for 

selection of reference nodes. The work in (Ghassemi F. 

& Krishnamurthy V., 2008a) applies cooperative and 

non-cooperative game theory for sensor network 

localization, namely for measurement allocation among 

reference nodes localizing the target. The localization 

process has been modelled as cooperative and non-

cooperative game belonging to the class of weighted-

graph games. For such a representation, the vertices 

correspond to the players and the coalition and non-

coalition value can be obtained by summing the 

weights of the edges that connect a pair of vertices in 

the coalition and non-coalitional with self-loop edges 

only considered with half of their weights. A weighted-

graph game can therefore be well represented by 
 (    

 
   weights, in contrast to 2N numbers which 

are usually required to represent a cooperative and non-

cooperative game. Basic idea is to allocate more 

measurements to nodes that contribute more to the 

localization process. The allocation algorithm has been 

integrated into a Bayesian estimator. In (Ghassemi F. & 

Krishnamurthy V., 2008b), utility is defined as 

information gain from a node, i.e. the mutual 

information between the prior density of target position 

and the measurement. Additionally, a price for 

transmission is included to account for the current 

energy level in the nodes, and the energy needed for 

data transmission. The algorithm proposed in 

(Moragrega A., 2011) assumes a number of static 

anchor nodes, strategically placed to guarantee 

coverage to all unknown nodes. Anchors transmitting 

with lower energy can provide coverage to a smaller 

number of nodes; aim is to minimize power 

consumption at the anchor nodes, while assuring 

desired localization accuracy. The metric for 

positioning quality is the GDOP. The problem has been 

formulated as a cooperative and non-cooperative game, 

using Nash equilibrium as solution concept 

 

In (Bejar B., 2010) the coalition and non-coalition 

formation within the set of neighbouring anchors helps 

reduce communication costs. Using only a subset of 

available reference nodes does not necessarily degrade 

the accuracy, since some of them provide redundant 

information. In some situations it might be even useful 

to discard ranging information from some reference 

nodes, after they have been identified as unreliable due 

to biases in the measurements. This paper the 

localization problem has been defined as a coalition 

and non-coalition NTU game, where coalitions are 

formed based on the merge and split procedure. The 

utility function is defined to account for both a quality 

and cost indicator. While the quality function accounts 

for inconsistencies between each node’s measured 

distance and the final joint estimated distance within 

the coalition, the cost function is related to 

communication costs. The target tracking task based on 

coalition formation has been implemented using a 

Kalman filter. For the coalition formation approach a 

higher mean estimation error has been observed than 

for grand coalition, i.e., when all nodes contribute to 

the tracking process. Nevertheless, in terms of 

communication costs the proposed scheme provides 

significant savings. 

 

(Ghareshiran O. N. & Krishnamurthy V., 2010) 

proposes a dynamic coalition and non-coalition 

formation algorithm used for energy saving in multiple 

target localization. Assuming that nodes in sleep mode 

do not record any measurements and thereby save 

energy in both sensing and  transmitting data, the 

optimization problem is formulated to maximize the 

average sleep time of all nodes in the network, assuring 

that targets are localized with desired accuracy. An 

important contribution is exploitation of spatial 

correlation of sensor readings. Accuracy metric used is 

the determinant of the Bayesian Fisher information 

matrix (B-FIM). The characteristic function is 

formulated in a way that larger coalitions of sensors do 

not necessarily lead to longer sleep times. This is 

mainly due to the fact that the B-FIM, depending on 

both relative angles and distances of sensors to the 

target, does not automatically increase as the number of 

sensor nodes in a coalition goes up. The trade-off 

between performance and average sleep time allocated 

in the network is demonstrated via Monte Carlo 

simulations. 

 

4. Utility function 

The following parameters are relevant for reference 

node selection: number of references, quality of range 

estimates and geometry. Therefore we propose a node 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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selection mechanism based on the Cramer Rao Lower 

Bound. Since the CRLB gives the upper bound on 

accuracy, the utility function has to be inversely 

proportional to the CRLB. Besides the quality indicator, 

utility function also has to reflect the cost. Cost is 

related to the energy spent for message exchanges 

between nodes, and is proportional to the distances of 

target node to reference nodes. Having in mind the 

energy consumption if all reference nodes were used 

for localization, the grand coalition and non-coalitional 

is not optimal. Therefore we define the problem as a 

nonsuperaditive cooperative and non-cooperative game. 

Since least square localization is not possible for less 

than three reference nodes, we set the value of all 

coalitions containing less than three nodes to zero. For 

the remaining non-cooperative is ones, the coalition 

and non-coalition value of each chosen subset of nodes 

S will be of the form: 

 

 (   
 

       
 ∑

    

     ---------------- (3) 

 

Where         is the CRLB for the coalition and non-

coalition S,     is the distance from node i   S to the 

target t, and R is the transmission range, used to 

normalize the cost function. In order to illustrate the 

performance of coalition and non-coalition formation 

based node selection, we will perform an exhaustive 

search over all possible coalition and non-coalition sets 

containing three nodes.  

 

Definition .1. Repeated game  

 

Each node i has a von Neumann-Morgenstern utility 

function defined over the outcomes of the stage game 

G, as        where A is the space of action profiles. 

Let G be played several times and let us award each 

node a payoff which is the sum of the payoffs it got in 

each period from playing G. Then this sequence of 

stage games is itself a game, called a repeated game. 

Here,  

 

  
     

     
 …………………. (4) 

 

Where   
  is the gain of node I’s reputation,   

  is the 

cost of forwarding a packet for the node  and   are 

weight parameters. We assume that we call a packet. 

Packet all has the same size. The transmission cost for 

a single packet is a function of the transmission 

distance. In particular we assume   
        where   a 

constant that includes antenna characteristics d I the 

distance of the transmission   is the path loss exponent. 

 

Definition .2. Finitely Repeated Games 

 

These games represent the case of a fixed time horizon 

T <∞. Repeated games allow players to condition their 

actions on the way their opponents behave in previous 

periods. We begin the one of the most famous 

examples, the finitely repeated Prisoner’s Dilemma. 

The stage game is shown in below  

 

Let R  (0, 1) be the common discount factor, and G (R, 

T) represents the repeated game, in which the 

Prisoner’s Dilemma stage game is played T periods. 

Since we want to examine 

      

[
      
      

] 

The Stage Game: Prisoner’s Dilemma. 

 

How the payoffs vary with different time horizons, we 

normalize them in units used for the per-period payoffs.  

 

The average discounted payoff  

 

   
   

      
∑     ( 

   
   ……………….(5) 

 

To see how this works, consider the payoff from both 

players cooperating for all T periods. 

The discounted sum without the normalization is 

∑    
      

   
 
   …………..(6) 

While with the normalization, the average discounted 

sum is simply. 

 

Definition 3. Infinitely Repeated Games 

 

These games represent the case of an infinite time 

horizon T = ∞ and are meant to model situations where 

players are unsure about when precisely the game will 

end. The set of equilibrium of an infinitely repeated 

game can be very different from that of the 

corresponding finitely repeated game because players 

can use self-enforcing rewards and punishments that do 

not unravel from the terminal date. In particular, 

because there is no fixed last period of the game, in 

which both players will surely defect, in the Repeated 

Prisoner’s Dilemma (RPD) game players may be able 

to sustain cooperation by the threat of “punishment” in 

http://www.ijsrcseit.com/
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case of defection. While in the finitely repeated games 

case a strategy can explicitly state what to do in each of 

the T periods, specifying strategies for infinitely 

repeated games is trickier because it must specify 

actions after all possible histories, and there is an 

infinite number of these. 

 

Definition.4. The payoffs (          ) is feasible in 

the stage game G if they are a convex combination of 

the pure-strategy payoffs in G. The set of feasible 

payoffs is 

V=convex hull {v/           (    }…………. 

(7) 

Definition.5. Player i’s reservation payoff or minmax 

value is 

 

  =      
     

  (        ……………… (8) 

 

Definition.6. The set of feasible strictly individually 

rational payoffs is the set 

{v 
 

  
           }………………(9) 

 Theorem.1. (Folk Theorem). 

 

For every feasible strictly individually rational payoff 

vector v, there exists an R < 1 such that for all             R 

  (R, 1) there is a Nash equilibrium of G(R) with 

payoffs v. 

 

Proof. Assume there is a pure strategy profile a such 

that g(a)=    Consider the following strategy for each 

player i: “Play    in period 0 and continue to play   as 

long as 

 

(i) The realized action profile in the previous 

period was a, or 

(ii)  The realized action in the previous period 

differed from an in two or more components. 

If in some previous period player i was the 

only one not to follow profile a, then each 

player j plays     for the rest of the game.” 

Can player i gain by deviating from this 

profile? In the period in which he deviates, he 

receives at most       (   and since his 

opponents will minimax him forever after, he 

will obtain    in all periods thereafter.  

 

 

 

Thus, if player i deviates in period t, he obtains at most 

(          (          (   

       …..(10) 

 

To make this deviation unprofitable, we must find the 

value of δ such that this payoff is strictly smaller than 

the payoff from following the strategy, which is  : 

(          (          (            . 

(          (              . 

(          (         ……………….(11) 

 

For each player i we define the critical level   by the 

solution to the equation 

(           (          ……………(12) 

 

Because   <  , the solution to this equation always 

exists with    < 1. Taking R = max   completes the 

argument. Note that when deciding whether to deviate, 

player i assign probability 0 to an opponent deviating in 

the same period. This is what Nash equilibrium 

requires: Only unilateral deviations are considered. 

 

Theorem .2. (Friedman, 1971). 

 

Let   be a static equilibrium with payoffs e. Then for 

any v   V with    >    for all players i, there is an   R< 

1 such that for all R>  there is a subgame perfect 

equilibrium of G(R) with payoffs v. 

Proof. Assume there is a strategy profile a such that 

g(ˆa) =   Consider the following strategy profile: “In 

period 0 each player i plays    Each player i continue 

to play     as long as the realized action profiles were a 

in all previous periods. If at least one player did not 

play according to a, then each player plays   
  for the 

rest of the game.” This strategy profile is a Nash 

equilibrium for R large enough that 

 

(1-R)       (          

 

This inequality holds strictly at R = 1, which means it 

is satisfied for a range of R < 1. The strategy profile is 

sub game perfect because in every sub game off the 

equilibrium path the players play   forever, which is a 

Nash equilibrium of the repeated game for any static 

equilibrium  . 

 

 

 

5. Pure NE and Evolutionary Stability 

http://www.ijsrcseit.com/
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1) Pure Nash Equilibrium:  

 

We prove that our evolutionary routing game has two 

pure Nash Equilibrium strategies. 

Proposition.1. 

In the evolutionary routing game, strategy pairs (     ) 

and (     ) are pure NE. 

Proof: Suppose two nodes are picked randomly from 

two large populations of sensor nodes in the network. 

These nodes are supposed to select one of the two 

strategies; each competes against the other, in order to 

transmit the packet. In Table I, assume the row and the 

column are the two players from populations A and B, 

respectively. These players select strategy pairs (     ) 

and (     ). The payoffs of the selection are 
 

   
 

 

   
 

and 
 

   
 

 

   
 respectively. Let us say that the players 

select strategy pairs (     ) and (     ) instead. Thus, 

the payoffs for those strategy pairs will be zero. This 

means that the player who is playing strategy   does 

not have an incentive to change the strategy to    

because of the penalty of reducing the payoff according 

to equation 1. As a result we can say that strategy pairs 

(      ) and (      ) are not profitable deviations. 

According to the NE definition the strategy pairs (     ) 

and (     ) are a pure NE for this game. 

2) Evolutionary Stability: We will examine if the pure 

NE strategies (     ) and (     ) in the routing game 

are evolutionary stable or not. Consider a group of two 

populations playing the same (     ) strategy s, which 

is referred to as the incumbent strategy. That means the 

players will play (     ) which is a symmetric NE. The 

strategy s is called evolutionary stable if a small group 

playing a different strategy,    which is referred to as 

the mutant strategy, would disappear with time. The 

ESS defined as any evolutionary stable strategy must 

be a symmetric pure NE, where the performance of 

strategy s against itself is better than it does against a 

mutant strategy. However, if the strategy is not strictly 

Nash, it should satisfy the second condition of the 

evolutionary stability. The second condition defined as 

that the incumbent   must do strictly better against the 

   than a mutant strategy does against a mutant. In this 

game, the pure strategies are not symmetric pure NE 

where the payoff of strategy   is different from the 

payoff of strategy     (i.e., u(      ) < u(      ) . 

According to the definition of ESS, the pure strategy 

NE in our game is not evolutionary stable. 

Proposition.2. 

 

Our mixed strategy NE (      ) is a two-species 

evolutionary stable strategy.  

Proof: First, we define the replicator equations, which 

are ruling the behaviour of the system over time based 

on the strategy pair (     ). In our routing game, we 

define the replicator equation such that the fraction of 

strategy (  ) grows at a rate equal to its fitness minus 

the average fitness of the player. We have the following 

replicator equations: 
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Second, we need to find the stable fixed point for the 

two replicator equations. We have the MSNE point, 

which we calculated in V-B1. We proved how this 

point is a fixed point under the two replicator equations 

(12) and (13). Since we already have a stable point 

(     ) in our model, we need to show that the point is 

fixed under the replicator Equations. Therefore, we 

need to satisfy that the last part (
    ]

   

)  (
 

   

)  and 

(
    ]

   

)  (
 

   

) in equations (11) and (13), respectively, 

should equal zero. Therefore, if we substitute the values 

of p and q from equations (9) and (10) with these last 

parts, we will get zero. As result, (      ) is a 

asymptotically stable fixed point for the replicator 

dynamic. Based on asymmetric ESS our mixed strategy 

NE (     ) s a two-species evolutionary stable strategy. 

 

III. RESULTS AND DISCUSSION 
 

As we mentioned before, much of the prior 

investigation into multipath routing in wireless 

networks has focused on providing multiple node-

disjoint paths for routing between a source and a 

destination node. It is intuitive that a forward-k strategy 

results in greater number of node-disjoint paths ask 

increases. Figure 3 shows how the number of node 

disjoint paths varies for the various schemes. It is 
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noteworthy that the flooding is particularly effective as 

far as this metric is concerned. We now turn to our 

robustness metric   the probability that the source is 

able to send information to the sink in the presence of 

uniform random node failures. Figures 5 and 6 show 

how this metric varies with the transmission radius for 

failure rates of 5% and 20% respectively. We make two 

observations from these figures. The first is that for a 

given transmission radius, the single path routing 

mechanism does indeed provide much lower robustness 

than the multipath routing schemes. The second is that 

for low failure rates, the three multipath routing 

mechanisms all provide nearly the same level of 

robustness. In essence the additional redundancy 

provided by having more than 2 node-disjoint paths 

results in negligible gains in robustness for low levels 

of node failures. At the failure rate of 20% there is 

slightly greater differentiation between the different 

multipath routing schemes but one can again see the 

law of diminishing returns at play - flooding provides 

only negligibly greater robustness than the forward-3 

routing protocol. 

Thus far we have ignored one critical aspect: the 

energy expenditure. While the multipath routing 

schemes provide greater robustness for a fixed value of 

the transmission radius, they do, of course, do so at the 

cost of a greater number of transmissions. This can be 

seen in figure 4. Flooding requires an order of 

magnitude higher number of transmissions than even 

forward-3, showing it are clearly not an energy-

efficient mechanism for providing robustness to node 

failures. This is still far from a clear picture of the 

energy-robustness trade-offs. We have two parameters 

that we can tune to increase the energy and robustness 

metrics: one is the value of k, which in effect changes 

the routing structure without affecting the underlying 

topology. By increasing k, we apply energy in the form 

of greater number of transmissions in order to realize 

robustness gains through multiple paths. The second 

tenable parameter is the transmission radius: even if we 

stick to single path routing, increasing this parameter 

increases the robustness to node failures because it 

decreases the number of hops, leaving fewer possible 

failure modes. Hence we plot the robustness metric 

with respect to the energy metric        which 

incorporates both the transmission radius R as well as 

the number of transmission    . This is shown as 

scatter plots in figures 7 and 8 for failure rates of 5 and 

20 % respectively, for      

 
 

Figure 3: Number of Node Disjoint Source Sink 

Routes with respect to the Transmission Radius 

 

 
 

Figure 4: Number of Nodes Transmitting with respect 

to Transmission Radius 

 

 
Figure 5: Probability that a route exists with respect to 

Transmission Radius (5 % failure rate) 
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Figure 6: Probability that a route exists with respect to 

Transmission Radius (20 % failure rate) 

 

 
 

Figure 7: Probability that a route exists with respect to 

normalized energy cost (5 % failure rate) 

 
 

Figure 8: Probability that a route exists with respect to 

normalized energy cost (20 % failure rate) 

 

IV.CONCLUSION 

 
A cooperative and non-cooperative  game theoretic 

model with for power control taking into account the 

residual energy of the nodes in a homogeneous sensor 

network considering various deployment schemes have 

been analysed in this paper. The connectivity is taken 

into consideration and the existence and uniqueness of 

the reliable energy efficient routing protocol based on 

cooperative and non-cooperative repeated game theory 

in wireless sensor networks and clustering are studied 

for the game model. The utility of nodes without 

residual energy and with residual energy are compared 

for all the deployment schemes. The maximum utility 

is obtained at minimal transmission power scheme. 

With the inclusion of the interference among the nodes 

due to the optimizing behaviour of a particular node is 

suppressed. Further the sensor nodes by requiring 

lesser transmit power and thereby extends the network 

security efficiently. 
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