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ABSTRACT 
 

Decision support system is a specific class of information systems to support data-oriented analyses and business 

performance enhancement. Cloud-based decision support system becomes a popular choice because of the value it 

can provide to the businesses. However, since decision support data are very sensitive, data privacy remains one of 

the top concerns. In this paper, we review the security and cryptographic mechanisms that aim at making decision 

support system secure in a cloud environment, and discuss current related research challenges. 
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I. INTRODUCTION 

 
Cloud computing offers a variety of services through a 

pay-per-use model on the Internet. The flexibility cloud 

computing offers is very appealing for many 

organizations, especially mid-sized and small ones, 

because it provides reduced start-up costs and means to 

financially cope with variations in system usage. 

Outsourcing data to the cloud is particularly interesting 

[34]. However, decision-support data are particularly 

sensible, e.g., personal data, health-related data, 

business data. Data warehouses (DWs) is a read-only 

analytical database is the foundation of decision 

support system [42]. Traditionally, decision support 

data are stored in central repositories, i.e., data 

warehouses (DWs), which consolidate historical data 

from different sources and allow on-line analysis 

processing (OLAP). Outsourcing decision-support data  

in the cloud raises security issues. With increasingly 

sophisticated internal and external cloud attacks, 

traditional security mechanisms are no longer sufficient 

to protect such data [36]. 

 

In this paper, we review the security mechanisms that 

may be implemented to protect the security of cloud 

decision-support data. We classify such security 

mechanisms in three classes: 

differential privacy (Section 2), threshold cryptography 

(Section 3) and cryptographic schemes allowing 

computations over encrypted data (Section4). We 

discuss the various challenges in this research area as 

well as implementation barriers in Section 5. Finally, 

Section 6 concludes the paper. 

 

II. DIFFERENTIAL PRIVACY  
 

Confidential data are normally not directly available. 

Yet, authorized users may combine query answers with 

external background knowledge to infer sensitive 

information. Such threats are known as linkage and 

probabilistic attacks. To preserve privacy, data must be 

sanitized by removing well-known identifiers such as 

names or social security numbers and using data 

anonymization techniques such as perturbation and 

masking [11].  

 

Data masking simply replaces original data. Some 

database management systems (DBMSs) natively 

include such features [6]. Obscuring query processing 

and results may be achieved either by rejecting queries 

leading to privacy disclosure or through methods such 

as k-anonymity, l-diversity, and t-closeness, which 

introduce noise in data. However, such techniques must 

be implemented very carefully to keep a good balance 

between privacy and utility of the outcome [22]. 

 

In the context of DWs, privacy-preserving OLAP in 

distributed environment can be achieved by table 

perturbation and reconstruction [1]. Algorithms can 

reconstruct count aggregates over sub-cubes. 

http://ieeexplore.ieee.org/abstract/document/4385255/
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Unfortunately, other aggregation functions such as sum 

and minimum are not supported. Adding noise to query 

answer is used, too [33], with several techniques 

automatically adjusting the scale of noise to reduce 

relative errors while still ensuring differential privacy. 

 

Finally, (k, e)-anonymity helps anonymize numerical 

attributes [26], i.e., the observed measures or KPIs in 

DWs. Partition and permutation are used to preserve 

privacy when aggregating data from large databases. 

However, although such a perturbation approach 

prevents privacy breaches, it can also lead to errors in 

aggregation results. 

 

III. THRESHOLD CRYPTOGRAPHY 

 
Threshold cryptography is a mechanism in which one 

person or authority alone cannot access data, whereas a 

group of authorities can, under some conditions. 

Moreover, secret data must be stored in several 

locations to avoid presenting a single point of attack. 

 

The basis of threshold cryptosystems was introduced 

by Shamir in 1979 [27]. In Shamir’s secret sharing, the 

secret is mathematically divided into pieces that are 

stored at   participants’, with      participants being 

required to reconstruct the secret. Secret sharing is very 

flexible and scalable, and one can easily imagine 

participants being cloud service providers (CSPs). The 

first actual threshold encryption scheme couples an 

ElGamal cryptosystem with secret sharing [10]. It has 

been enhanced with signatures to guarantees 

verifiability and robustness [7], [28]. 

 

Several schemes exploit threshold encryption in a 

distributed data management context. [29]’s protocol 

allows participants to collaboratively compute 

aggregation queries without gaining knowledge of 

intermediate results. Moreover, users can verify query 

results with the help of signatures. However, this 

protocol is strictly limited to a specific kind of 

databases with particular schemas, and only allows sum 

and average aggregations. Other systems allow exact 

match and range queries, as well as updates, given 

index keys as predicates [32]. However, aggregate 

queries are not addressed.  

 

 

 

 

IV.  COMPUTATION OVER ENCRYPTED DATA 

 

1) Suitable Cryptographic Schemes 

 

Homomorphic Cryptography: Most encryption 

schemes require data to be decrypted before they can 

be processed. When processing data in the cloud, this 

would mean the CSP has full access to data, which is 

unacceptable. Only homomorphic encryption (HE) 

allows performing arbitrary computation over 

encrypted data without decryption [22]. 

Fully homomorphic encryption (FHE) allow 

implementing any function over encrypted data [13]. 

However, it requires so much computing power that it 

cannot be used in practice. Even though many 

improvements have been proposed for, e.g., reducing 

encryption key size or eliminating [13]’s bootstrapping 

procedure, building an efficient and usable FHE is still 

a challenge. Yet, somewhat homomorphic encryption 

(SWHE), such as the Paillier encryption scheme [24], 

can be used in practice, by allowing only a certain 

number of operations over encrypted data. The HELib1 

library indeed proposes many implementations and 

optimizations of  SWHEs. 

 

Functional Encryption: In recent years, functional 

encryption (FE) has emerged as a new paradigm in 

cryptography [23]. FE is a public key encryption 

system that supports “partial” decryption keys. The 

data owner creates a secret key     for any function  ,  

and any user can efficiently compute       over 

encrypted data knowing     [14]. Decrypting cipher 

          using     reveals      and nothing else 

[4].  

 

Traditional public-key encryption is actually a specific 

case of FE. For example, in identity or attribute-based 

encryption,     is a user identifier or a set of attributes 

[5].  Finally, although FE seems similar to FHE in 

terms of functionality, a crucial difference is that FHE 

outputs encrypted results, while the output of FE is 

available in clear [5]. 

 

When outsourcing data to the cloud, FE offers an 

elegant solution for, e.g., spam filtering on encrypted 

emails, mining big data or delegating computation to 

multiple clients, because it is non-interactive. However, 

implementation barriers are still a great challenge.  
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2) Querying Encrypted Data 

 

Comparison: Comparison over encrypted data can be 

evaluated through either secure multiparty computation 

(SMC) or order preserving encryption (OPE). SMC is 

based on Yao’s millionaire problem [35], [41] which 

implements a protocol for “greater than” comparison of 

two private values [8]. Although SMC approaches are 

secure, they cannot currently be implemented.  

OPE enables to perform range queries over encrypted 

data while preserving the order of clear text in 

ciphertext [19]. OPE is a weak encryption scheme, 

because it reveals order, and is thus vulnerable to plain-

text attacks [19], [25]. If an attacker has knowledge 

about the distribution patterns of plain texts, s/he can 

map them to discover the encryption key or infer 

encrypted values. 

 

To overcome this drawback, multivalued OPE 

(MVOPE) encrypts the same data to different 

ciphertexts [18], [20], while preserving in cipher texts 

the order of unencrypted values. MV-OPE helps to 

compute operations such as                min; max 

and count [20]. 

 

Search: Searching over encrypted data is an important 

problem because it is the primary solution to access 

outsourced data stored at an untrusted CSP’s. 

Deterministic Encryption is the simplest solution to 

search over encrypted records in a database. For 

instance, the Encrypt-with- 

Hash deterministic scheme [3] supports fast search on 

encrypted data. However, it leaks some information to 

the server. Other approaches provide do more security 

guarantees, but at the cost of the slower search.  

 

SQL Querying: Bucketization allows executing SQL 

queries over encrypted data without decryption. 

Bucketization divides plain text space into buckets, by 

using the database’s distributional properties [17]. Each 

bucket has an ID and a minimum and maximum value. 

For each data item in the bucket, the ID is set as a tag. 

Client queries are mapped to bucket-level queries 

before being sent to the CSP. They are then evaluated 

using only the information in the index tags 

corresponding to data items. Bucketization provides an 

approximate query processing mechanism. It may 

indeed return numerous false positives. Thus, results 

must be post-processed to the client’s. 

 

[17] proposed a bucketization procedure for answering 

multidimensional range queries on multidimensional 

data, which computes secure indexing tags of data to 

prevent the server from learning exact values. 

Bucketization is then considered as an optimization 

problem to minimize the risk of disclosure. A threshold 

is defined to help the data owner control the tradeoff 

between disclosure risk and cost. 

 

3) Secure Data Management Systems 

Building a secure DBMS, although much desirable in 

our cloud DW scenario, is little addressed in the 

literature. Some solutions have nonetheless been 

proposed. The most important challenge of secure 

DBMSs is to formally guarantee privacy, which has not 

been achieved by the systems we review in this section.  

 

Bucketization-based Approach: [15] developed 

techniques to allow the bulk of SQL execution being 

run at the CSP’s, with the help of a kind of index that 

partitions an SQL query. The rest of query needs 

decryption, and thus is executed at the client’s. An 

algebraic framework is proposed minimized query 

processing by the client. This approach allows any kind 

of SQL queries, including aggregation queries, joins, 

and grouping. However, it requires interaction with the 

client to complete any query. Row filtering is 

performed at the CSP’s [31]. 

 

This approach was extended to support aggregation 

(sum, count, average, minimum and maximum) on 

encrypted data without decryption [16]. Formal 

techniques transform SQL aggregation queries, which 

are divided into two main categories: certain queries 

and maybe queries. Certain queries can aggregate data 

at the CSP’s, while maybe query results must be 

transmitted back to the client to compute final results. 

Unfortunately, it has been demonstrated that this 

approach is vulnerable to basic cipher text-only attacks 

[21]. 

 

CryptDB and MONOMI: CryptDB aims to protect 

confidentiality and manages query processing over 

encrypted data [25]. CryptDB mostly uses symmetric 

key encryption and introduces a particular encryption 

scheme for any given data item, based on queries 

observed at run-time. Moreover, CryptDB uses chain 

encryption keys for passwords. As a result, if a user is 
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not logged into the application, an adversary cannot 

decrypt the users’s data. Encryption in CryptDB is like 

onion layers that store multiple ciphertexts within each 

other.  The outermost layers provide maximum 

security, whereas inner layers provide more 

functionality and less security. 

To execute the queries over encrypted data, CryptDB 

uses a trusted proxy server that rewrites queries before 

sending them to the CSP. After executing queries at the 

CSP’s, the results are sent back to the proxy server, 

which decrypts the result and sends the final un-

encrypted results to the user’s application. 

 

MONOMI builds upon CryptDB to allow analytical 

queries over encrypted data outsourced to the cloud 

[31]. MONOMI allows many more operations than 

previous systems, i.e., 19 out of the 22 queries of the 

TPC-H decision-support benchmark [30], while [15] 

and CrypDB supported 2 and 4 queries, respectively. 

Moreover, MONOMI addresses performance issues 

caused by large DW volumes and slow query 

processing over encrypted data, e.g., by splitting 

queries. 

 

However, the drawback of MONIMI is the heavy 

communication load between client and server. For 

instance, intermediate results may be exchanged 

several times to execute the different parts of a split 

query [31]. 

 

SDB: [40] introduced a secure query processing 

system, SDB,  using data interoperability that allows a 

wide range of complex queries to be computed by the 

CSP. By interoperability, the output of an operator is 

used as input of another operator. SDB implements the 

Secure Multiparty Computation (SMC) model [41], but 

unlike SMC, a secret value is split into two shares, one 

is stored at the CSP's and another at the user's. SDB 

supports a wide range of SQL queries (e.g., all TPC-

H queries  [30]) efficiently.  

 

Column-oriented DBMS: [12] conducted a 

comprehensive study on answering sum and average 

aggregation queries in data outsourcing models. They 

demonstrate that the performance of an HE scheme 

designed in a novel way is comparable to that of 

traditional, symmetric encryption scheme (e.g., DES), 

in which computation is performed on plaintext after 

decryption. The proposed HE scheme operates on a 

much larger block size than single numeric values, 

which helps manipulate multiple data values in large 

encryption blocks. The interesting point in this work is 

that a column-oriented DBMS, which is the most 

appropriate model for DW storage [9], is used. This 

scheme can handle aggregate queries with indexes, as 

well as grouping queries. SQL HAVING clauses are 

not supported, though. 

 

4) Secure  DWs 

 

ABACUS: [38] proposed a solution based on Shamir’s 

secret sharing [27] to preserve the privacy of 

distributed DWs.  A middleware called ABACUS was 

developed which allow the execution of queries among 

distributed DWs. ABACUS allows performing 

intersection, join, and aggregation queries in a privacy-

preserving manner. The middleware operates as a 

proxy, which allows authorized users querying multiple 

private DWs.  One-way hash functions,e.g., SHA-1, 

MD4, and MD5 [39], are used to handle join and 

intersections. Shamir’s secret sharing is implemented to 

perform SUM and AVERAGE.  Analytical evaluations 

confirm the efficiency and scalability of ABACUS.   

MOBAT: [37] introduced a data masking technique for 

DWs which provides a trade-off between privacy and 

performance. A middleware called MOBAT is set 

between the user and the server. MOBAT has access to 

some encrypted metadata such as private keys, rewrites 

the queries, and obscures data before storing at the 

server. Each numerical value is masked using three 

keys, among them two are private and one is public and 

stored along masked data at the server.  For each value 

in row    in a column, a public key      is stored along 

with the masked value at the server. Two private keys 

   and       for     column are encrypted and stored at 

the server, too. Experimental evaluations show reduced 

computational and storage overhead of the proposed 

masking technique compared with encryption-based 

solutions.   

Partitioned encrypted DWs:  [20] proposed a novel 

method for encrypting and querying a DW hosted in 

the cloud. This scheme generates indistinguishable 

encrypted data, allowing the execution of 

multidimensional queries over the encrypted DW. The 

DW is horizontally partitioned among several DBMSs. 

A master DW maintains the address of each partition. 

On the client side, a secure host is responsible for 
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encrypting query parameters and for decrypting results. 

Sum aggregations and data grouping must be computed 

by the secure host after decryption. To allow grouping 

on encrypted data, two different multivalued encryption 

schemes help preserve order in encrypted data, but they 

do not support minimum and maximum aggregation 

queries and induce a heavy overhead. 

fVSS: [2] proposed a novel approach for securing 

cloud DWs by flexible verifiable secret sharing, fVSS. 

fVSS encrypts and shares data over multiple CSP and 

allows OLAP queries without reconstruction. This 

scheme also includes inner and outer data verification 

to check data correctness and the honesty of 

participants. Moreover, fVSS optimizes data volume 

and thus reduces outsourcing costs in pay-as-you-go 

model in the cloud. 

 

V.   RESEARCH CHALLENGES AND ISSUES 

 
The weaker cryptographic approaches, such as OPE 

[25], reveal significant information. Thus, any 

cryptography method that does not meet rigorous 

cryptography based security standards must be used 

carefully. When encrypting a DW’s multidimensional 

schema, to what level should be pushed encryption? If 

all data, including keys, are encrypted, this impairs the 

processing of joins. But does having primary and 

foreign keys unencrypted reveal any information about 

data? OLAP queries commonly involve aggregations 

over measures. Thus, HE sounds like an appropriate 

choice for encryption. For instance, Paillier encryption 

can be used to sum encrypted data, but the cost of 

decryption at the client’s can remain high in some 

situations. As a result, it can be more efficient to 

decrypt data at the client’s rather than executing 

aggregation queries over encrypted data at the CSP’s 

[31]. Moreover, HE cannot preserve order in encrypted 

data. Thus, when sorting, grouping and range 

operations must be performed, as is common in OLAP, 

order-preserving encryption schemes must be 

considered, although they induce a storage overhead 

that negatively influences performance and cost.  

 

Performance optimization techniques, such as indexing, 

partitioning or view materialization, can apply onto 

encrypted data. However, they speed up certain queries 

but slow down others [31]. As a result, it is crucial to 

select a cryptographic method that meets all usage 

constraints. Again, a tradeoff must be defined to meet 

the intended level of privacy while minimizing the 

impact on performance. For example, in bucketization, 

increasing the number of buckets impairs performance, 

while a smaller number of buckets increases the risk of 

data disclosure.  

 

In conclusion, the main challenge in secure cloud DW 

management, which remains timely, can be stated as 

follows.  

 

“How to choose and implement security mechanisms 

that overcome computational and storage overheads, 

while guaranteeing data security in cloud DWs?” 

 

VI. CONCLUSION 

 
In this paper, we reviewed the security mechanisms 

that can nowadays be in the deployment of cloud 

decision-support data. We particularly focused on the 

cryptographic schemes and the (would-be) secure 

systems that enable executing queries over encrypted 

data without decryption. This survey highlights their 

benefits and barriers of existing solutions in a cloud 

computing context, and hints at future, practical 

solutions.  
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