
CSEIT172465 | Received : 21 July 2017 | Accepted : 31 July 2017 | July-August-2017 [(2)4: 360-364]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 4 | ISSN : 2456-3307

360

Model-based Integration and System Test Automation for

Software Systems
*G. Lavanya, S. Vasundra

Department of Computer Science JNTU College of Engineering, Anantapurumau, Andhra Pradesh, India

ABSTRACT

The importance of software system is growing rapidly, traditional development system are not suitable to meet their

requirements. New cost-efficient tools are needed for software packages. This paper introduces an automatic test

generation technique, known as Model-based Integration and System Test Automation (MISTA). This integrated

practical and security testing of various software package systems . MISTA generates test code that can be executed

immediatetly. It uses a high-level Petri web to capture each control and data-related needs for practical testing,

access management testing, or penetration testing with threat models. Once generating test cases from the test model,

MISTA converts the test cases into workable test code by mapping model-level components into implementation-

level. MISTA has enforced test generators for varied test coverage criteria of test models, code generators for

various programming and scripting languages, and test execution environments like Java, C, C++, C#, HTML-

Selenium IDE. The effectiveness is evaluated in terms of access-control fault detection rate using mutation analysis

of access control implementation.

Keywords : Functional Testing, Model-Based Testing, Security Testing, Software Assurance.

I. INTRODUCTION

The widespread application of web and mobile

computing has considerably increasing the dependence

on software enabled systems. This dependence raises

vital issues concerning computer code dependableness

and security as a result of a computer code failure will

result in fatal consequences. However, computer code

testing may be a labour-intensive activity, which

regularly accounts for five hundred or additional of the

computer code development prices[11]. To enhance

testing productivity and scale back prices, it's

extremely fascinating to automatize test generation and

execution.

It additionally facilitates fast, economical verification

of demand changes and bug fixes, and minimizes

human errors. In this present a tool supported technique

referred to as Model-based Integration and System

check Automation (MISTA), for integrated testing of

system functions, access management policies, and

security threats[1][2]. It can be also define as Model-

Implentation Description. It consists of a test model

and Model-Implementation Mapping(MIM). It uses

Predicate-Transition (PrT) nets as associate degree

expressive formalism for building useful and security

test models.

PrT nets are high-level Petri nets, a well-studied formal

methodology for modeling and verification of

computer code systems[3]. Previous work has

additionally demonstrared that PrT nets square

measure capable of specifying access management

policies and security threats. Because test models

specified by PrT nets will capture each knowledge and

management flows of test requirements, MISTA will

generate complete model-based test cases, as well as

specific test inputs and test databases(expected results).

Note that model-based test cases are not yet feasible

with the System Under Test(SUT), because test

models are abstract descriptions of SUT's behaviors.

MISTA provides an expressive way for describing the

relations between the model-level parts and therefore

the implementation level constructs within the target

language or test surroundings thus automatically

transform the model-level tests into feasible code[4].

After providing test cases from the test model

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 361

according to given criteria, test model converts the test

scripts into feasible test code by comparing model-

level elements into implementation level builds the test

code and test trees.

The remaining paper is organized as follows. In section

2 includes the related work of different methodologies.

The section 3 introduces the proposed system. The

section 4 gives experimental results. The section 5

concludes the paper.

II. RELATED WORK

Dianxiang Xu [6],proposed threat models and practical

models are both spoken to by PrT nets. The

fundamental linguistic distinction between them is that

assault moves in danger models are named after attack .

Zhu and He [8] have projected a strategy for testing

abnormal state Petri nets. The philosophy comprises of

four testing procedures: move arranged testing, state-

situated testing, information flow-arranged testing, and

specification-situated test.

The work on test script modify was done by

Grechanik[5],in which they immediately find changes

between GUI objects and locate test script statements

that reference the modified GUI objects.Their tool

gives the warnings that enable testers to fix errors in

test scripts manually.

Mc Dermott [7] has additionally proposed to model

framework and system assaults with customary place

and move nets, and make entrance tests as per assault

nets. No system was given to produce security tests

from attack nets.

T. Mouelhi [9],[10] proposed a concentrated on the

testing of part consent assignments and client part

assignments in RBAC, where clients, parts, and

authorization guidelines are predefined. It additionally

naturally produces executable access control tests from

the test models

III. PROPOSED WORK

MISTA provides an expressive way for describing the

relations between the model-level elements and the

implementation-level constructs in the target language

or test environment so it automatically transform the

model-level tests into executable code. The input to

MISTA is called a Model-Implementation

Description(MID) consists of model and a Model-

Iplementation Mapping(MIM). MISTA uses a high-

level petri net to imprison both control and data-related

requirements for functional testing, access control

testing or penetration testing with threat models. After

test cases, MISTA test models converts the test cases

into executable test code by mapping model-level

elements into implementation-level and contructs the

test code and test trees.

Figure 1: System Architecture of MISTA(Model-based

Integrtion and System test Automation For Software

Systems).

This section presents the enhanced test scripts model. It

consists of three parts,

1. MID Specification

MODEL-IMPLEMENTATION ESCRIPTIONS(MID),

as the front-end input language for MISTA, lay the

foundation of the automated test generation technique

in the approach. A MID specification consists of a test

model (PrTnet) and a MIM description. The former

does not use the implementation details of the SUT,

whereas the latter relies on the test model as well as the

SUT. First present PrT nets and MIM, and then

describe with the examples like Bank account

transaction, block Game, Cruise control and self-test.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 362

2. PrT Nets for Test Modeling

A PrT(Predicate Transition) net consists of places (data

and conditions), transitions(activities), normal and

bidirectional arcs between places and transitions (input

and output conditions of activities), inhibitor arcs from

places to transitions (negative input conditions), and

initial markings (states). A transition can be associated

with a guard condition.

A PrT net N is a tuple < P,T,F,I,L,φ,> where the

elements are defined as follows.

P - a finite set of places (also called predicates).

T - a finite set of transitions.

F - a finite set of normal arcs from places to transitions

and from transitions to places, ie.

F ⊆ P x T ∪ T x P, .

I - a finite set of inhibitor arcs from places to transitions.

L - a labeling function on arcs F ∪ I. L(f) is the label

for arc f ∈ F ∪ I When the label of an arc is not

specified, the default label is a no-argument < >.

Φ - a guard function on T . The guard condition of

transition t, φ(t), is a first-order logical formula, which

can evaluate true or false.

Multiple initial markings (states) are often related to

identical internet structure. Suppose,

 = ⋃

 ∈ -------- Eq1

Equation 1, Defines Mk0(p) is that the set of tokens

residing in P. A token in p can be a tuple of ground

terms<X1,…….,Xn>. we tend to denote it as

p(X1,…….,Xn). For a zero-argument token tend to

denote it as p. The tokens in an initial marking

represent take a look at information or system settings

(e.g., choices and preferences).

consider handcart system is an example, token product

and token amount represent the quality. A transition

could also be related to a listing of variables as formal

parameters. These variables usually seem within the

connected arc labels.

Fig.1 shows a straight forward PrT internet, wherever

holding, clear, on, and handempty square measure

places (circles) and stack(x, y) may be a transition (a

rectangle). The guard condition of stack(x, y) is x!=y (it

is encircled in brackets). An arrow (e.g., from holding

to stack) represents a standard arc; a line phase with a

tiny low circle (e.g., from handempty to stack)

represents a matter arc.

 Fig : 1 A simple

PrT(Predicate Transition) net.

3. Model-Implementation Mapping

MIM description is used to generate code by mapping

the elements in a test model to the implementation

constructs based on the System Under Test(SUT)

programming interface. The generated code can be

executed with the SUT.

A MIM specification consists of 7-tuple , it can

measure as follows.

 MIM=<ID,f0,fc,fa,fm,fs,h> -----

------ Eq2,

1) ID is that the identity of the SUT take a look at

against the test model.

2)f0 : OM OI - the object function that maps the

objects in the test model to the objects in the SUT.

Given an object x in the test model, f0(x) is an object in

the SUT.

3)fc : T CODEI - the element (or method) mapping

function that maps transitions (component calls) with in

the PrT net to code blocks (test operations) in the SUT.

4) fa : P CODEI - the accessor function that maps

the places in the PrT net to code blocks (called accessor)

in the SUT. An accessoris typically a sequence of

assertions that scan and check system states.

5) fm : t CODEI - the mutator function that maps

the places in the PrT net to code blocks (called

mutators) in the SUT. A mutator may be a piece of

code which will modification system states.

6) - a list of places in the PrT net that are

implemented as system settings in the SUT. These

places are referred to as setting predicates.

7) h - the helper code function that defines user-

provided code to be enclosed in the test code.

IV. EXPERIMENTAL RESULTS

The results of our experiments are summarized based

on two Java applications are Banking account (BA) and

Login Validate (LV) with different parameters as

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 363

shown in below table. In the below table Define T is

the total number of transitions, P is the total number of

places (they reflect the complexity of test models), TC

is the number of test cases, LOC is the number lines of

code generated, M is the total number of mutants, K is

number of mutants killed by the test and FDR is the

fault detection rate (number of mutants killed).

Models

Tests

 Mutation

Analysis

T

P

TC

LOC

M

K

FDR

BA

73

27

207

3086

243

233

95.9%

LV

126

30

179

4680

914

914

100%

Table 1 : Results for Banking account and Login

Validate

For BA, 207 test cases in 3,086 lines of non-comment

code were generated. They killed 233 out of 243

mutants, with an overall detection rate of 95.9%. The

10 remaining mutants not killed by the tests having

some adding-rule operator but can never cause any

security issues because the functional precondition of

the activity in the added rule is not satisfiable. In

LV,179 tests in 4,680 line of code were generated.

They killed all of the 914 mutants.

Figure1, shows total number of pass and fail tests in

application. when the testing process advances, it gets

more time consuming to discover extra faults since

increasing and more tests should be made and executed.

Figure 1 : Total number of pass and fail test cases

Figure 2 shows cost effectiveness of test cases. When

number of failed test cases are more than passed test

cases, cost increases. When number of failed test cases

are less than passed test cases, cost decreases.

Figure 2 : Cost effectiveness of test cases.

IV. CONCLUSION

The main contribution of this paper introduces a

technique for integrated model-based testing of system

functions, access management policies, and security

threats. This technique will generate executable tests

with reference to a spread of coverage criteria of test

models represented by Predicate Transition nets. It

additionally supports variety of programming

languages, and test execution framework. It is simple to

introduce a new test generator, target language, or test

execution environment. The methodologies proposed

address the effects on testing scope and profitability

and minimize cost and time of testing.

V. REFERENCES

[1]. M. Utting and B. Legeard, "Practical Model-

Based Testing: A Tools Approach. San

Francisco", CA, USA: Morgan Kaufmann, 2006.

[2]. Michael Grottke, Dong Seong Kim, Rajesh

Mansharamani, Manoj Nambiar, Roberto Natella,

Kishor S. Trivedi, "Recovery From Software

Failures Caused By Mandelbugs", IEEE 2015

[3]. K. Jensen, Coloured Petri Nets: Basic Concepts,

Analysis Methods and Practical Use. New York,

NY, USA: Springer-Verlag, 1992, vol. 26.

[4]. T. Murata, "Petri nets: Properties, investigation

and applications," Proc. IEEE, vol. 77, no. 4, pp.

541-580, Apr. 1989.

[5]. M. Grechanik, Q. Xie, and C. Fu, "Maintaining

and Evolving GUI-directed Test Scripts," in

0

1

2

3

4

5

TS1 TS2 TS3 TS4 TS5

TotalPass

TotalFail

Cost

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 364

Proceedings of the International Conference on

Software Engineering (ICSE’09), 2009, pp. 408-

418.

[6]. Dianxiang Xu, Senior Member, IEEE, Michael

Kent, Lijo Thomas,TejeddineMouelhi, and Yves

Le Traon, Automated Model-Based Testing of

Role-Based Access Control Using

Predicate/Transition Nets, Transactions on

Computers, Vol. 64, NOo. 9, September 2015.

[7]. K. H. Mortensen, Automatic code generation

method based on coloured Petri net models

applied on an access control system, in

Application and Theory of

PetrNets.NewYork,NY,USA: Springer-Verlag,

2000, pp. 367-386.

[8]. Zhu and X. He, A methodology for testing high-

level Petri nets, Inf. Softw. Technol., vol. 44, pp.

473-489, 2002.

[9]. Pretschner, Y. L. Traon, and T. Mouelhi, Model-

based tests for access control policies, in Proc.

1st Int. Conf. Software Testing Verification and

Validation (ICST'08), Lillehamer, Norway, Apr.

2008.

[10]. Briand, L.C, Di Penta, M., Labiche, Y. Assessing

and improving state based class testing: A series

of experiments, IEEE Trans. on Software

Engineering, vol. 30, no. 11, pp. 770-793, Nov.

2004.

[11]. Dr. S. Vasundra , K.Hussenvalli1, Software

System to Model Preferences of Multiple Users",

International Journal of Advance Research in

Computer and Communication Engineering,",

Volume3, Issue 11, November 2014.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

