
CSEIT17251 | Received : 26 August 2017 | Accepted : 08 Sep 2017 | September-October-2017 [(2)4: 82-88]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

82

Recovering Data Stability Service for Preserving Rational Data in

Cloud Environment
Dr. R. Reka1, Dr. T. Parithimarkalaignan2

1
Professor & Head, Department of Computer Science & Engineering, Annai Mathammal Sheela Engineering

College, Namakkal, Tamil Nadu, India
2Principal, Annai Mathammal Sheela Engineering College, Namakkal, Tamil Nadu, India

ABSTRACT

Cloud computing usage has increased rapidly in many companies. Cloud computing offers many benefits in terms of

low cost and accessibility of data. Cloud computing has recently emerged as a key technology to provide individuals

and companies with access to remote computing and storage infrastructures. In order to achieve highly available yet

high performing services, cloud data stores rely on data replication. However, the replication technique brings the

issue of stability. The data is replicated in multiple geographically distributed data centers, and to meet the

increasing requirements of distributed applications, many cloud data stores adapt eventual stability and allows

running the data intensive operations under low latency and results in the cost of data staleness. Reliability is often

enhanced in cloud computing environments because Service Providers utilize multiple redundant sites for disaster

recovery. This is attractive to enterprises for business continuity. Due to these issues we proposed a novel called

Data Stability as a Service (DSaaS) model for efficient cloud process and to provide promised level of stability by

using crypto analysis algorithm for security using hidden approach mechanism. We proposed Third Party Auditing

technique and also role based access control which only requires a loosely synchronized clock in the audit cloud.

Keywords : Cloud Storage, Data Stability as a Service, Data Management, TPA, RBAC.

I. INTRODUCTION

Cloud computing has recently emerged as a technology

to allow users to access infrastructure, storage, software

and deployment environment based on a pay-for-what-

they-use model. Cloud computing is a complete new

technology. It is the development of parallel computing,

distributed computing grid computing, and is the

combination and evolution of Virtualization, Utility

computing, Software-as-a-Service (SaaS),

Infrastructure-as-a-Service (IaaS) and Platform-as-a-

Service (PaaS). Cloud is a metaphor to describe web as

a space where computing has been pre-installed and

exist as a service; data, operating systems, applications,

storage and processing power exist on the web ready to

be shared. To users, cloud computing is a Pay-per-Use-

On-Demand mode that can conveniently access shared

IT resources through the Internet. Where the IT

resources include network, server, storage, application,

service and so on and they can be deployed with much

quick and easy manner and least management and also

interactions with service providers. Cloud computing

can much improve the availability of IT resources and

owns many advantages over other computing

techniques. Users can use the IT infrastructure with

Pay-per-Use-On-Demand mode; this would benefit and

save the cost to buy the physical resources that may be

vacant [1].

II. METHODS AND MATERIAL

1. Service Models

A. Infrastructure as a Service (IaaS) means you're

buying access to raw computing hardware over the

Net, such as servers or storage. Since you buy what

you need and pay-as-you-go, this is often referred

to as utility computing. Ordinary web hosting is a

simple example of IaaS: you pay a monthly

subscription or a per-megabyte/gigabyte fee to

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 83

have a hosting company serves up files for your

website from their servers.

B. Software as a Service (SaaS) means you use a

complete application running on someone else's

system. Web-based email and Google Documents

are perhaps the best-known examples. Zoho is

another well-known SaaS provider offering a

variety of office applications online.

C. Platform as a Service (PaaS) means you develop

applications using Web-based tools so they run on

systems software and hardware provided by

another company. So, for example, you might

develop your own ecommerce website but have the

whole thing, including the shopping cart, checkout,

and payment mechanism running on a merchant's

server. App Cloud (from salesforce.com) and the

Google App Engine are examples of PaaS.

2. Related Work

A cloud is essentially a large scale distributed system

[3] where each piece of data is replicated on multiple

geographically distributed servers to achieve high

availability and high performance. Thus, we first

review the stability models in the distributed systems.

In a standard textbook, anticipated two classes of

stability models: data-centric stability and client-centric

stability. Data-centric stability model considers the

internal state of a storage system i.e., how updates flow

through the system and what guarantees the system can

provide with respect to updates. However, to a

customer, it really does not matter whether or not a

storage system internally contains any stale copies. As

long as no stale data is observed from the client’s point

of view, the customer is satisfied. Therefore, client-

centric stability model concentrates on what specific

customers want i.e., how the customers observe the

data updates and their work describes different levels of

stability in distributed systems, from strict stability to

weak stability. High stability implies high cost and

reduced availability and in the states strict stability

never needed practice concern and is even considered

harmful. In reality, mandated by the CAP protocol [4]

many distributed systems sacrifice strict stability for

high availability. Then, we have a brief work on

achieving different levels of stability in a cloud. By

means of encrypting and assigning secured identities

for each request and response at each stage, together

with the maintenance of machine readable usage/access

rights, privacy is preserved. While it is easier to carry

out the encryption schemes, there exists a difficulty in

providing machine readable access rights. This problem

of effective right expressions generation is the future

work that has to be carried out. Considering the privacy

of the users in the cloud environment and projected a

flexible method of access control. Each cloud user is

linked with certain attribute, which determines their

access rights. The paper propounded a two-tier

encryption model in which the base phase and surface

phase builds up the two-tier of the model respectively.

At the first phase, the data owner performs local

attribute-based encryption on the data that has to be

outsourced. The surface phase on the other hand is

performed by the cloud servers, after the initialization

done by the cloud data owner this phase implements T.

The causal memory model [5] has attracted the

attention of a number of researchers because it is

considered to be powerful enough to allow easy

programming (strong memory models), but at the same

time it also allows inexpensive implementations (weak

memory models). As a consequence, a number of

algorithms implementing the causal memory increases

the concurrency and supports replication of data. With

the replication, there are copies (replicas) of the same

variables in the local memories of several processes of

the system, which allows these processes to use the

variables simultaneously. However, in order to

guarantee the stability of the shared memory, the

system must control the replicas when the variables are

updated and that control can be done by either

invalidating outdated replicas or by propagating the

new variable values to update the replicas.

3. Stability Model

Nowadays cloud computing is the fastest growing

technology that is used as a source of providing service

through Internet. It is an enhanced model of Utility

Computing. It embodies all technologies in Computer

Architecture. It delivers the clients the needed

applications, processes and Information as a service. It

provides software platform as a service and virtualized

servers, storage area and networks as a service. In

addition to that it also manages and delivers database

services. The traditional time consuming way of

database management degrades the system

performance. At present a weak form of stability is

maintained in cloud computing environment. This

paper introduced recovered stability model for cloud

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 84

computing platform using prioritized read-write

mechanism [4].

Analysis of assuring the stability models for semi-

active replication protocol is presented in this part of

the paper. Both data-centric and client-centric stability

gives assured with the two scopes: ordering and

staleness. Staleness describes how much a given replica

is lagging behind, either expressed in terms of time or

versions. Low bounded staleness values can often be

tolerated by applications as long as the corresponding

real-world events that would have the same or higher

staleness values without a database system. In general,

apart from the context of semi-active protocol, when

replica send request to replica, the system storage of

replica will be updated right away. In contrast replica

might not be consistent with replica might not be

consistent with replica for some time. The small

staleness values often will appear but we may not sense

it and ordering is more critical than staleness. In a

setting with strict stability, all requests must be

executed on all replicas in same chronological order.

This stability model is hard to implement in distributed

databases due to clock synchronization issues and

communication delays which cause that replicated

servers might disagree on the chronological order of

events. The standard database mechanism of locking

offers poor performance levels in a distributed setting.

Based on this, data centric stability models exist that

relax certain ordering requirements while keeping those

that are essential to applications.

4. Data Stability Models In Public Cloud Storage

The public cloud storage services like Amazon

S3, Google Cloud Storage and Windows Azure Storage

replicate the data to ensure high availability. On the

other hand, with data being replicated, the storage

services exhibits certain data stability models. Different

cloud service providers employ different data stability

models nowadays. In this post, we survey the data

stability models provided by the solutions from the

three big players: Amazon S3 and DynamoDB, Google

Cloud Storage and Windows Azure Storage.

A. Amazon S3

Amazon S3 is a simple key-based object store service

for the Internet. Amazon S3 buckets in all Regions

provide read-after-write stability for PUTS of new

objects and eventual stability for overwrite PUTS

and DELETES. However, there is one exception: if a

HEAD or GET request to a key name is made to find if

the object exists before the object is create, Amazon S3

provides only eventual stability. Updates to a single

key are atomic.

B. Google Cloud Storage

Google Cloud Storage provides strong global

stability for upload and delete operations and list

operations in a region, and eventual stability for object

list operations across regions. For access controlling,

granting is strongly consistent while revoking

is eventual consistent. Additionally, the upload

operations to Google Cloud Storage are atomic.

Caches, as usually, have a different stability model

from the storage itself. Cached objects from Google

Cloud Storage that are publicly readable might not

exhibit strong stability.

C. Windows Azure Storage

Windows Azure Storage provides three properties that

the CAP theorem claims are difficult to achieve at the

same time: strong consistency, high availability, and

partition tolerance. Brad Calder et al. published the

design of the Windows Azure Storage in the

paper Windows Azure Storage: A Highly Available

Cloud Storage Service with Strong Consistency at

SOSP’11.

5. Groundwork

Cloud storage services [2] have become commercially

popular due to their overwhelming advantages. To

provide ubiquitous always-on access, a cloud service

provider (CSP) maintains multiple replicas for each

piece of data on geographically distributed servers. A

key problem of using the replication technique in

clouds is that it is very expensive to achieve strong

stability on a world wide scale. In this section we first

illustrate the stability as a service (SaaS) model, and

then we describe the auditing strategies. Finally, we

discuss about the proposed model Data Stability as a

Service (DSaaS) with the auditing structure to provide

the security levels to guarantee the stability levels.

A. STABILITY AS A SERVICE (SAAS)

In this paper, we first present a novel Stability as a

Service (SaaS) model [13], which consists of a large

data cloud and multiple small audit clouds. In this

model, data cloud is maintained by a CSP, and a group

https://www.systutorials.com/tag/cloud/
https://www.systutorials.com/tag/google/
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 85

of users that constitute an audit cloud can verify

whether the data cloud provides the promised level of

consistency or not. In this model a two-level auditing

architecture, which only requires a loosely

synchronized clock in the audit cloud, then we design

algorithms to quantify the severity of violations with

two metrics: the commonality of violations, and the

staleness of the value of a read. Finally, we devise a

Heuristic Auditing Strategy (HAS) to reveal as many

violations as possible. Extensive experiments were

performed using a combination of simulations and real

cloud deployments to validate HAVE. Furthermore, in

this model some issues have been occurred they are,

discrimination may cause a much more information

loss from updating, data downloading time

consumption is more for requesting, sensitive attributes

does not prevent unethical and less security for data

transformation addressed issues in this model.

B. DATA STABILITY AS A SERVICE (DSAAS)

Motivated by the increasing popularity of eventually

consistent key-value [9] stores as a commercial service,

we address two important problems related to the

stability properties in a history of operations on a

read/write register i.e., the start time, finish time,

argument, and response of every operation). To

consider how to detect stability violation as soon as one

happens. To this end, we formulate a specification for

offline verification algorithms, and to overcome this

problem Data Stability as a Service (DSaaS) model is

proposed as a new platform service to encapsulate the

proposed approach. DSaaS service ensures SaaS

services with crypto analysis services for cloud

portability and security, as it works as a cloud adapter

between Role Based Access Control (RBAC) service

instances. Experiments show that proposed approach

realized by the DSaaS service with RBAC access

provides much better response time when compared

with classical locking and blocking techniques. This

model is considered as a rising subject, cloud stability

is playing an increasingly important role in the decision

support activity of every walk of life and to get

efficient item set result based on the DSaaS.

6. Stability Types

In data –centric stability models ordered by the

strictness of their guarantees in semi-active data

replication protocol. For each model, how it can be

translated into a client-centric stability model is

discussed in this section. As already discussed, there

are two stability scopes: staleness and ordering. The

following stability models (apart from Linearizability)

do not consider staleness. In fact, increasing strictness

of ordering guarantees often leads to higher staleness

values as updates may not be applied directly but are

required to fulfill dependencies at first. The lowest

possible ordering guarantee is typically described as

weak stability. As the name states, guarantees are very

weak in that they do not really exist. Essentially, weak

stability translates to a colloquial “replicas might by

chance become consistent”. While an implementation

may or may not have a protocol to synchronize

replicas, a typical use-case can be found in the context

of a browser cache: it is updated from time to time but

replicas will rarely be consistent. As weak stability

does not provide any ordering guarantees at all, there is

no relation to client-centric stability models in semi-

active data replication protocol. The Eventual stability

[6] is a little strict stability. It requires convergence of

replicas, i.e., in the absence of updates and failures the

system converges towards a consistent state. Updates

may be reordered in any way possible and a consistent

state is simply defined as all replicas being identical.

Eventual stability is very vague in terms of concrete

guarantees but is very popular for web-based services.

In terms of client-centric stability guarantees, eventual

stability often fulfills these guarantees for a majority of

requests but does not guarantee to do so. As an

example, Amazon S34 currently delivers MRC for

about 95% of all requests whereas it still violated MRC

in about 12% of all requests. While there are certainly

some use-cases where eventual stability cannot be

applied, it often suffices as the real world itself is

inherently eventually consistent. The difference is that

more conflict resolution is necessary at the application

layer requiring a higher skill set from application

developers. Instead of pessimistically locking data

items “guesses and apologies” are used. Data stores

that are eventually consistent thus have the property

that in the absence of updates, all replicas converge

toward identical copies of each other. Eventual stability

essentially requires only that updates are guaranteed to

propagate to all replicas. Eventual stability is therefore

often cheap to implement. The causal stability [7] is the

strict level of stability that can be achieved in an always

available storage system based on the trade-offs of the

CAP theorem [4]. In a causal consistent storage system,

all requests that have a causal relationship to another

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 86

request must be serialized i.e., executed in the same

order on all replicas while unrelated requests may be

serialized in arbitrary order.

III. RESULTS AND DISCUSSION

1. DSAAS ARCHITECTURE

A. DSAAS ARCHITECTURAL DESIGN

Figure 1. DSAAS Architecture

B. RBAC ARCHITECTURE

Figure 1. RBAC Access Roles

One kind of access control which makes only the

authorized persons are allowed s clearly determined by

Role Based Access Control (RBAC). RBAC consists of

different roles, constraints according to the sessions the

roles are taken place in the accessing resources from

the authorized accessibilities. RBAC distinguishes

different roles and responsibilities in order to make the

access of system or to maintain the database resources

from client to the server and server to the client with

regard to the roles such as individual user or user of the

organization or group of users which is controlled by

the group member. According to the role the access is

made with the authorization abilities without

unauthorization accessibilities.

C. DSAAS Architecture\

Figure 3. DSaaS Architecture

D. DATA FLOW DIAGRAM

2. MODULES OF DSAAS

A. EPIGRAPHY KEY HYPOTHESIS

Cloud computing moves the application software and

databases to the large data centers, where the

management of the data and services may not be fully

trustworthy. This unique attribute, however, poses

many new security challenges which have not been

well understood. In this article, we focus on cloud data

storage security, which have not been an important

aspect of quality of service. To ensure the correctness

of users’ data in the cloud, we propose an effective and

flexible distributed scheme with two salient features,

opposing to its predecessors. By utilizing the

homomorphism token with distributed verification of

erasure-coded data, our scheme achieves the integration

of storage correctness insurance and data error

localization, i.e., the identification of misbehaving

server(s). Unlike most prior works, the new scheme

further supports secure and efficient dynamic

operations on data blocks, including data updates,

delete and append operations. Extensive security and

performance analysis shows that the proposed scheme

is highly efficient and resilient against Byzantine

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 87

failure, malicious data modification attack, and even

server colluding attacks.

B. ELEMENT KEY HYPOTHESIS

Group key distribution schemes has recently received a

lot of attention from the researchers, as a method

enabling large and dynamic groups of users to establish

group keys over unreliable network for secure multicast

communication. In such schemes, time is divided into

epochs called sessions. At the beginning of each

session, a Group Manager transmits some broadcast

message, in order to provide a common key to each

member of the group. Every user, belonging to the

group, computes the group key using the message and

some private information. The main property of the

scheme is that, if some broadcast message gets lost,

then users are still capable of recovering the group key

for that session by using the message they received at

the beginning of a previous session and the message

they will receive at the beginning of a subsequent one,

without requesting additional transmission from the

Group Manager. This approach decreases the workload

on the Group Manager and reduces network traffic as

well as the risk of user exposure through traffic

analysis.

C. KEY ALLOTMENT

Common group key if frequently updated to ensure

secure multicast communication Group lifetime is

divided into sessions; single key instance is valid only

throughout one session. Group membership can change

between consecutive sessions. At the beginning of

session j, Group Membership distributes a new session

key to nodes. Session duration is determined by the

Group Membership. It can vary over time, depending

on security policy, group membership changes and

nodes behavior. Session key changes have to be

performed, with some predefined minimum frequency

to protect the system from cryptanalysis attacks.

Moreover, to effectively remove the node from

multicast group, who is willing to leave, or is forced to

leave, a new session must begin and nodes shall start

from protecting group communication using a new

session, which is not accessible to the attacks. Thus, the

choice of session length is a tradeoff between key

distribution cost in terms of communication and

computational overhead, and the required security level.

IV. CONCLUSION

We concluded that a new service (i.e., Data Stability as

a Service) to encapsulate the proposed approach.

DSaaS service also ensures SaaS with crypto analysis

services for cloud portability and security, as it works

as a cloud adapter between RBAC service instances.

Experiments show that anticipated approach realized by

the DSaaS service with RBAC access provides much

better response time when compared with classical

locking and blocking techniques.

V. REFERENCES

[1]. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, et al., "A view of cloud

computing," Commun. ACM, vol. 53, no. 4,

2010.

[2]. P. Mell and T. Grance, "The NIST definition of

cloud computing (draft)," NIST Special

Publication 800-145 (Draft), 2011.

[3]. E. Brewer, "Towards robust distributed systems,"

in Proc. 2000 ACM PODC.

[4]. "Pushing the CAP: strategies for consistency and

availability," Computer, vol. 45, no. 2, 2012.

[5]. M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P.

Hutto, "Causal memory: definitions,

implementation, and programming," Distributed

Computing, vol. 9, no. 1, 1995.

[6]. D. Bermbach and S. Tai, "Eventual consistency:

how soon is eventual?" in Proc. 2011 MW4SOC.

[7]. W. Lloyd, M. Freedman, M. Kaminsky, and D.

Andersen, "Don’t settle for eventual: scalable

causal consistency for wide-area storage with

COPS," in Proc. 2011 ACM SOSP.

[8]. H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu,

"Data consistency properties and the trade-offs in

commercial cloud storages: the

consumers’perspective," in Proc. 2011 CIDR.

[9]. E. Anderson, X. Li, M. Shah, J. Tucek, and J.

Wylie, "What consistency does your key-value

store actually provide," in Proc. 2010 USENIX

HotDep.

[10]. C. Fidge, "Timestamps in message-passing

systems that preserve the partial ordering," in

Proc. 1988 ACSC.

[11]. W. Golab, X. Li, and M. Shah, "Analyzing

consistency properties for fun and profit," in

Proc. 2011 ACM PODC.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 88

[12]. A. Tanenbaum and M. Van Steen, Distributed

Systems: Principles and Paradigms. Prentice Hall

PTR, 2002.

[13]. Qin Liu, Guojun Wang, Member, IEEE, and Jie

Wu, Fellow, IEEE, "Consistency as a Service:

Auditing Cloud Consistency", vol.11, no.1,

March 2014.

[14]. http://www.explainthatstuff.com

[15]. https://www.systutorials.com

