
CSEIT1725110 | Received : 12 Sep 2017 | Accepted : 30 Sep 2017 | September-October-2017 [(2)5: 498-501]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

498

Measuring Software Quality Using Micro Interaction Metrics
A. Sreepradha

M.Tech Scholar, Computer Science and Engineering, JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh, India

ABSTRACT

Programming imperfection is a coding or logic mistakes that happen in application breakdown or wrong outcomes.

Imperfection forecast is an imperative assignment in programming designing since Software quality is asset

compelled movement, where it alludes to the constraint of staffing, gear, and different assets that are important to

finish the undertaking, by anticipating programming inclined substances is to put the best work exertion on those

elements. Engineer's cooperation’s which are considered as one of the defects markers are caught in Mylyn, a

shroud module with the assistance of smaller scale communication measurements (MIMs).

Keywords: Software quality, Mylyn, MIMs.

I. INTRODUCTION

Software quality can be related as the degree to which

an approach, element, or process meets user or user

desires. Only a defer in conveyance of programming it

can cause genuine income loss. Sometimes demand for

the software release to the market is a critical issue for

companies in most sectors of the software market. In

the meantime, despite the fact that is critical to meet

such necessity (urgent demands) reckless quality

commitment prompts responsibility and the fame in the

market that is the reason quality commitment is the

most fundamental thing before the product release.

That’s why software developers and software quality

assurance team need an innovative technique that

effectively predicts defects. That is how defect forecast

has been engaging process in the research area in

software engineering. Defects happen from human

oversights, developers commit errors, therefore,

abandons are infused, and programming comes up

short. Some of the defect indicators are the complexity

of source code, frequent code changes, previous defect

information, code dependencies apart from these even

the developer interactions like improper

communication between developer and client, task

switching, work interruptions etc are also considered as

defect predict indicators. But the existing Source Code

Metrics (CMs) and change History Metrics (HMs) are

not enough to address the developer behavior. This

detected correlations between behaviors of developers

and quality of software production. It is preferable to

make full use of developer’s interaction. Behavior

based software metrics can notify developers about

quality practices for enhancing the high quality of

software production. Designers need to comprehend

what is happening to be a developed stage, get genuine

certified if any rehashed blunder exists in their conduct

when they are in chipping away at venture amid

advancement. Here Micro Interaction Metrics (MIMs)

are utilized. The task of those metrics is to seize the

developer’s behavioral interactions at some stage in the

improvement manner. For this component to do, an

Eclipse that is maximum broadly used Java IDE, in

which complicated java initiatives are advanced. By

making utilization of Mylyn, an Eclipse plug-in, for

task context and storage recovery, it enables a

developer to work effectively with many different tasks

(such as bugs, problem reports or new features). Micro

interaction metrics (MIMs) are interaction metrics used

to hold the developer interaction information.

II. RELATED WORK

Past imperfections information are utilized to gauge

future deformities by Kim et al. D’Ambros et al.

conducted an extensive comparison of existing bug

prediction approaches utilizing CMs, HMs, past defects,

and the entropy of change metrics. Meneely et al.

Proposed developer social network-based totally

metrics to grasp the developer collaboration shape and

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 499

expect defects using it. But all CMs, HMs doesn’t deal

with developer’s interactions. Taek Lee, Han stated that

programmer’s interactions also affect the quality of

software they proposed novel Micro Interaction

Metrics (MIMs) that holds developers interaction data

stored in the Mylyn data.

Multiple works such as bugs, problem reports or new

functions can be done efficiently by developer with the

help of Mylyn. Tasks are included into Mylyn. For all

tasks which have been incorporated, Mylyn video

display person activity and attempts to identify

information regarding that particular task. Repositories

namely Bugzilla, JIRA and Github etc are combined

with Mylyn. Mylyn work is to record the developers

situation and to store it, that records of the developers’

situation such as editing or selecting files, can be

reviewed when developer wants to review.

Micro Interaction Metrics (MIMs) are the interaction

metrics to catch developer interactions that are related

to committing errors. File level and task level are two

classified design level of MIMs. The work of file-level

MIMs is to catch specific interactions for a file in a

project. NumEditEvent degree of MIMs for modifying

interaction indicates quantity of selection activities for

a selected file NumSelectionEvent file level metrics is

for browsing interaction which indicates number of

selection events observed for a particular file.

TimeSinceLastTask is for time interval interaction

which indicates time break since last task for a file. The

task level MIMs represents properties per task. Some

of the task level MIMs are NumRareEdit Number of

edit events with low DOI attribute values,

NumParallelEdit indicates number of files edited in

parallel in a task session, NumRepeatedEdit number

of files edited more than one time during a task session.

NumParallelBrws for browsing interaction number of

files browsed in parallel in a task session.

In defect prediction process, common bug

categorization procedure has been used, which enables

to forecast whether a given unknown file instance is

buggy or not. In the first step all valid files are

collected from Mylyn task session log as instances or

datasets, instances that are presented in both, before

and after the software release period are considered for

extracting metrics and counting defects. Edited file

information in Mylyn tasks are considered to count

post defects as each task session log are directly

attached with a bug report, it indicates whether the bug

is fixed or not. In step two MIMs are extracted in file

and task levels. For task sessions, unique interaction

activities that target a report instance are aggregated

from the metric extraction duration. File-level MIMs

for the report example is computed with the specific

event data. CMs and HMs are also extracted during

metrics extraction period as to compare HMs, CMs,

and MIMs. The Third step represents file instances,

number of defects, number of developers and history of

the files considered form the Mylyn task session. In

fourth step bug prediction model is considered with the

help of feature selection algorithm, in feature selection

ten-fold cross- validation process had been used, the

data sets are split into tenfold, the metrics that were

taken in model construction. For classification purpose,

classification algorithm is needed. The random forest

pseudo code that executed in weka had been used. In

fifth step evaluating the prediction models, F-measure

had used, for predicting a buggy instances as clean or

buggy.

III. PROPOSED SCHEME

To evaluate the software quality, comparison has been

done in between naive bayes and correlation based

feature subset algorithm from weka. Initially the

datasets that contains CMs, HMs and MIMs contains

metrics.

Some of the metrics that considered are NumEditEvent,

CntClassBase, AvgLineCmt etc.

3.1 Load Dataset

Initially upload dataset filed allows users to upload

files. Each dataset files are uploaded one after another.

Considered CMs, HMs and MIMs measurements

information records are uploaded.

3.2 Feature Selection Algorithms

Navie bayes and correlation based feature subset

algorithms which are in weka have been considered.

For each dataset file navies bayes and correlation

feature subset algorithms are applied one after another.

Confusion matrix is displayed which indicates buggy

and clean for uploaded datasets by calculating F-

measure.

3.3 Code Quality Graph

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 500

Here code quality graph is displayed by comparing

navie bayes and correlation based feature subset

algorithms. Graph is shown separately for every metric

data file.

3.4 F-Measure Graph

To evaluate quality, F-measure graph is displayed by

comparing Navie bayes and correlation based feature

subset algorithms. Graph is displayed individually for

each metric data file when uploaded one after another

individually.

3.5 Code Quality of CMs, HMs and MIMs

It displays the code quality in numerical values of three

metrics dataset files uploaded.

3.6 F-measure of CMs, HMs and MIMs

It displays F-measure values of all the three dataset

files uploaded.

IV. EXPERIMENTAL RESULTS

In experimental results considered datasets like CMs,

HMs and MIMs files are uploaded individually, each

dataset metrics make use of navies bayes classifier first,

it displays F-measure count and code quality count by

classifying datasets as buggy and clean, again for the

same data correlation based feature subset algorithm

have applied it also displays F-measure count and code

quality count by considering buggy and clean count.

Comparison is done between navie bayes and

correlation feature subset algorithm individually for

each datasets files.

Figure 1. Code quality graph

Figure 1 code quality graph displays comparison

between navie bayes and correlation feature subset

algorithm for MIMs dataset file.

After code quality graph, F-measure graph is displayed,

comparison between navie bayes and correlation

feature subset algorithm.

F-measure count for naïve bayes and correlation feature

subset can be seen. Same process is done for every

dataset metrics (CMs, HMs, and MIMs).

Figure 2. F-measure count

 Figure 2 F-measure count indicates the improved

instances count of correlation based feature subset

algorithm when compared to naïve bayes. At last

enhanced code quality and measure can be effortlessly

recognisied.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 501

V. CONCLUSIONS

By using Correlation feature subset algorithm code

quality have been improved when compared to navie

bayes algorithm. F-measure also improved when

correlation feature subset algorithm is use. Code

quality is improved from 85.9% to 89.4%.

VI. REFERENCES

[1]. Taek Lee, Jaechang Nam, Donggyun Han,

Sunghun Kim, Member, IEEE, and Hoh Peter In

"Developer Micro Interaction Metrics for

Software Defect Prediction".

[2]. A. Hassan, "Predicting faults using the

complexity of code changes," in Proc. 31st Int.

Conf. Software Eng., 2009, pp. 78-88.

[3]. S. Kim, E. J. Whitehead Jr., and Y. Zhang,

"Classifying software changes: Clean or buggy?"

IEEE Trans. Softw. Eng., vol. 34, no. 2, pp. 181-

196, Mar. 2008.

[4]. S. Kim, T. Zimmermann, E. J. Whitehead Jr., and

A. Zeller, "Predicting faults from cached

history," in Proc. 29th Int. Conf. Soft. Eng.,

2007, pp. 489-498.

[5]. S. Kim, T. Zimmermann, E. J. Whitehead Jr., and

A. Zeller, "Predicting faults from cached

history," in Proc. 29th Int. Conf. Soft. Eng.,

2007, pp. 489-498.

[6]. T. Menzies, J. Greenwald, and A. Frank, "Data

mining static code attributes to learn defect

predictors," IEEE Trans. Softw. Eng., vol. 33, pp.

2-13, Jan. 2007.

[7]. N. Nagappan, T. Ball, and A. Zeller, "Mining

metrics to predict component failures," in Proc.

28th Int. Conf. Softw. Eng., 2006, pp. 452-461.

