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ABSTRACT 
 

Programming imperfection is a coding or logic mistakes that happen in application breakdown or wrong outcomes. 

Imperfection forecast is an imperative assignment in programming designing since Software quality is asset 

compelled movement, where it alludes to the constraint of staffing, gear, and different assets that are important to 

finish the undertaking, by anticipating programming inclined substances is to put the best work exertion on those 

elements. Engineer's cooperation’s which are considered as one of the defects markers are caught in Mylyn, a 

shroud module with the assistance of smaller scale communication measurements (MIMs). 

Keywords: Software quality, Mylyn, MIMs. 

 

I. INTRODUCTION 

 
Software quality can be related as the degree to which 

an approach, element, or process meets user or user 

desires. Only a defer in conveyance of programming it 

can cause genuine income loss. Sometimes demand for 

the software release to the market is a critical issue for 

companies in most sectors of the software market. In 

the meantime, despite the fact that is critical to meet 

such necessity (urgent demands) reckless quality 

commitment prompts responsibility and the fame in the 

market that is the reason quality commitment is the 

most fundamental thing before the product release. 

That’s why software developers and software quality 

assurance team need an innovative technique that 

effectively predicts defects. That is how defect forecast 

has been engaging process in the research area in 

software engineering. Defects happen from human 

oversights, developers commit errors, therefore, 

abandons are infused, and programming comes up 

short. Some of the defect indicators are the  complexity 

of source code, frequent code changes, previous defect 

information, code dependencies apart from these even 

the developer interactions like improper 

communication between developer and client, task 

switching, work interruptions etc are also considered as 

defect predict indicators. But the existing Source Code 

Metrics (CMs) and change History Metrics (HMs) are 

not enough to address the developer behavior. This 

detected correlations between behaviors of developers 

and quality of software production. It is preferable to 

make full use of developer’s interaction. Behavior 

based software metrics can notify developers about 

quality practices for enhancing the high quality of 

software production. Designers need to comprehend 

what is happening to be a developed stage, get genuine 

certified if any rehashed blunder exists in their conduct 

when they are in chipping away at venture amid 

advancement. Here Micro Interaction Metrics (MIMs) 

are utilized. The task of those metrics is to seize the 

developer’s behavioral interactions at some stage in the 

improvement manner. For this component to do, an 

Eclipse that is maximum broadly used Java IDE, in 

which complicated java initiatives are advanced. By 

making utilization of Mylyn, an Eclipse plug-in, for 

task context and storage recovery, it enables a 

developer to work effectively with many different tasks 

(such as bugs, problem reports or new features). Micro 

interaction metrics (MIMs) are interaction metrics used 

to hold the developer interaction information. 

 

II. RELATED WORK 
 

Past imperfections information are utilized to gauge 

future deformities by Kim et al. D’Ambros et al. 

conducted an extensive comparison of existing bug 

prediction approaches utilizing CMs, HMs, past defects, 

and the entropy of change metrics. Meneely et al. 

Proposed developer social network-based totally 

metrics to grasp the developer collaboration shape and 
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expect defects using it. But all CMs, HMs doesn’t deal 

with developer’s interactions. Taek Lee, Han stated that 

programmer’s interactions also affect the quality of 

software they proposed novel Micro Interaction 

Metrics (MIMs) that holds developers interaction data 

stored in the Mylyn data. 

 

Multiple works such as bugs, problem reports or new 

functions can be done efficiently by developer with the 

help of Mylyn. Tasks are included into Mylyn. For all 

tasks which have been incorporated, Mylyn video 

display person activity and attempts to identify 

information regarding that particular task. Repositories 

namely Bugzilla, JIRA and Github etc are combined 

with Mylyn. Mylyn work is to record the developers 

situation and to store it, that records of the developers’ 

situation such as editing or selecting files, can be 

reviewed when developer wants to review.  

 

Micro Interaction Metrics (MIMs) are the interaction 

metrics to catch developer interactions that are related 

to committing errors. File level and task level are two 

classified design level of MIMs. The work of file-level 

MIMs is to catch specific interactions for a file in a 

project. NumEditEvent degree of MIMs for modifying 

interaction indicates quantity of selection activities for 

a selected file NumSelectionEvent file level metrics is 

for browsing interaction which indicates number of 

selection events observed for a particular file. 

TimeSinceLastTask is for time interval interaction 

which indicates time break since last task for a file. The 

task level MIMs represents properties per task. Some 

of the task level MIMs are NumRareEdit Number of 

edit events with low DOI attribute values, 

NumParallelEdit indicates number of files edited in 

parallel in a task session,  NumRepeatedEdit  number 

of files edited more than one time during a task session. 

NumParallelBrws for browsing interaction number of 

files browsed in parallel in a task session. 

 

In defect prediction process, common bug 

categorization procedure has been used, which enables 

to forecast whether a given unknown file instance is 

buggy or not. In the first step all valid files are 

collected from Mylyn task session log as instances or 

datasets, instances that are presented in both, before 

and after the software release period are considered for 

extracting metrics and counting defects. Edited file 

information in Mylyn tasks are considered to count 

post defects as each task session log are directly 

attached with a bug report, it indicates whether the bug 

is fixed or not. In step two MIMs are extracted in file 

and task levels. For task sessions, unique interaction 

activities that target a report instance are aggregated 

from the metric extraction duration. File-level MIMs 

for the report example is computed with the specific 

event data. CMs and HMs are also extracted during 

metrics extraction period as to compare HMs, CMs, 

and MIMs. The Third step represents file instances, 

number of defects, number of developers and history of 

the files considered form the Mylyn task session. In 

fourth step bug prediction model is considered with the 

help of feature selection algorithm, in feature selection 

ten-fold cross- validation process had been used, the 

data sets are split into tenfold, the metrics that were 

taken in model construction. For classification purpose, 

classification algorithm is needed. The random forest 

pseudo code that executed in weka had been used. In 

fifth step evaluating the prediction models, F-measure 

had used, for predicting a buggy instances as clean or 

buggy. 

 

III. PROPOSED SCHEME 
 

To evaluate the software quality, comparison has been 

done in between naive bayes and correlation based 

feature subset algorithm from weka. Initially the 

datasets that contains CMs, HMs and MIMs contains 

metrics. 

Some of the metrics that considered are NumEditEvent, 

CntClassBase, AvgLineCmt etc.  

 

3.1 Load Dataset 

 

Initially upload dataset filed allows users to upload 

files. Each dataset files are uploaded one after another. 

Considered CMs, HMs and MIMs measurements 

information records are uploaded. 

 

3.2 Feature Selection Algorithms 

 

Navie bayes and correlation based feature subset 

algorithms which are in weka have been considered. 

For each dataset file navies bayes and correlation 

feature subset algorithms are applied one after another. 

Confusion matrix is displayed which indicates buggy 

and clean for uploaded datasets by calculating F-

measure. 

3.3 Code Quality Graph 
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Here code quality graph is displayed by comparing 

navie bayes and correlation based feature subset 

algorithms. Graph is shown separately for every metric 

data file. 

 

3.4 F-Measure Graph 

 

To evaluate quality, F-measure graph is displayed by 

comparing Navie bayes and correlation based feature 

subset algorithms. Graph is displayed individually for 

each metric data file when uploaded one after another 

individually. 

 

3.5 Code Quality of CMs, HMs and MIMs 

 

It displays the code quality in numerical values of three 

metrics dataset files uploaded. 

 

3.6 F-measure of CMs, HMs and MIMs 

 

It displays F-measure values of all the three dataset 

files uploaded. 

 

IV. EXPERIMENTAL RESULTS 
 

In experimental results considered datasets like CMs, 

HMs and MIMs files are uploaded individually, each 

dataset metrics make use of navies bayes classifier first, 

it displays F-measure count and code quality count by 

classifying datasets as buggy and clean, again for the 

same data correlation based feature subset algorithm 

have applied it also displays F-measure count and code 

quality count by considering buggy and clean count. 

Comparison is done between navie bayes and 

correlation feature subset algorithm individually for 

each datasets files. 

 

 
Figure 1. Code quality graph 

 

Figure 1 code quality graph displays comparison 

between navie bayes and correlation feature subset 

algorithm for MIMs dataset file. 

After code quality graph, F-measure graph is displayed, 

comparison between navie bayes and correlation 

feature subset algorithm.  

F-measure count for naïve bayes and correlation feature 

subset can be seen. Same process is done for every 

dataset metrics (CMs, HMs, and MIMs).  

 

 
 

Figure 2. F-measure count 

 

 Figure 2 F-measure count indicates the improved 

instances count of correlation based feature subset 

algorithm when compared to naïve bayes. At last 

enhanced code quality and measure can be effortlessly 

recognisied. 
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V. CONCLUSIONS 

 
By using Correlation feature subset algorithm code 

quality have been improved when compared to navie 

bayes algorithm. F-measure also improved when 

correlation feature subset algorithm is use. Code 

quality is improved from 85.9% to 89.4%. 
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