
CSEIT1725126 | Received : 25 Sep 2017 | Accepted : 07 Oct 2017 | September-October-2017 [(2)5: 604-608]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

604

Implications of NoSQL Transaction Model in Cloud Database

System
Ashok Kumar P S , Md Ateeq Ur Rahman

Department of CSE, JNTU/ SCET, Hyderabad, Andra Pradesh, India

ABSTRACT

NoSQL cloud database systems are new types of databases that are built across thousands of cloud nodes and are

capable of storing and processing Big Data. NoSQL systems have been used in large scale applications that need

high availability and efficiency. Consequently, such systems lack support for standard transactions which provide

stronger consistency. This Paper proposes a new transactional model which provides NoSQL systems with standard

transaction support and strong level of data consistency. The strategy is to supplement current NoSQL architecture

with an extra layer that manages transactions. The proposed model is configurable where consistency, availability

and efficiency can be adjusted based on application requirements. The Preliminary experiments show that it ensures

stronger consistency and maintains good performance.

Keywords : Big Data, NoSQL, ACID, BASE, Couchdb, Mapreduce

I. INTRODUCTION

The concept of Big Data has led to an introduction of a

new set of databases used in the cloud computing

environment, that deviate from the characteristics of

standard databases. The design of these new databases

embraces new features and techniques that support

parallel processing and replication of data. Data are

distributed across multiple nodes and each node is

responsible for processing queries directed to its subset

of data. Each subset of data managed by a node is

called shard. This technique of data storage and

processing using multiple nodes improve performance

and availability.

The architecture of these new systems, also known as

NoSQL (Not Only SQL) databases, is designed to scale

across multiple systems. In contrast to traditional

relational databases which is built on sound

mathematical model, NoSQL databases are designed to

solve the problem of Big Data which is characterized

by 3Vs (Volume, Variety, Velocity) or 4Vs (Volume,

Variety, Velocity, and Value) model. As such, NoSQL

systems do not follow standard models or design

principles in processing Big Data. Different vendors

provide proprietary implementation of NoSQL systems

such that they meet their (business) needs. For instance,

unlike traditional relational database systems which

rely heavily on normalization and referential integrity,

NoSQL systems incorporate little or no normalization

in the data management.

The primary objective of NoSQL systems is to ensure

high efficiency, availability and scalability in storing

and processing Big Data. NoSQL systems do not

ensure stronger consistency and integrity of data. They

therefore do not implement ACID (Atomicity,

Consistency, Isolation, Durability) transactions.

However, it is important to provide stronger

consistency and integrity of data while maintaining

appropriate levels of efficiency, availability and

scalability.

Table 1. Comparison between SQL and NoSQL

ACID (RDBMS) BASE (NoSQL)

strong consistency weak consistency

isolation last write wins

transaction program managed

scale-up (limited) scale-out (unlimited)

robust database simple database

shared-something (disk,

memory, process)

shared-nothing

(parallelizable)

II. LITERATURE REVIEW

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 605

Various approaches have been proposed to address

transaction management in NoSQL databases.

However, because of the diverse flavors and kinds of

NoSQL databases, there has been no accepted standard

approach of managing transactions in NoSQL

databases. Deuteronomy is an approach towards

transaction processing in NoSQL databases.

Deuteronomy separates the transactional component

(TC) from the data component (DC). The TC manages

transactions and transactions can span multiple DCs. In

contrast to the approach proposed in this paper,

Deuteronomy makes use of locking mechanism to

manage concurrency and ensure consistency. Locking

is useful but it has negative effects on the performance

of transactions [6].

G-Store introduces a key grouping protocol to group

keys for applications that need multi-row transactions.

Groups within G-store are dynamic and have a life span.

Thus, groups will be deleted after their life span.

Transactions are limited to within a group and G-Store

cannot provide transactions across groups [7].

Megastore uses entity groups formation similar to G-

store. But in Megastore, group formation is static and

an entity belongs to a single group throughout the life

span of that entity. As such, ACID transactions can

only take place within specified groups [4].

COPS (Cluster of Order Preserving Servers),

introduces two variables called dependencies and

versions to preserve order across keys. A COP is

implemented using a distributed key value NoSQL

database [8].

CloudTPS is like Deuteronomy, make use of two layers

architecture which includes LTM (Local Transaction

Manager) and the cloud storage. Transactions are

replicated across LTMs to preserve consistency in the

presence of failures [9].

III. SYSTEM ARCHITECHTURE

The below figure shows a general block diagram

describing the activities performed by this project. The

entire architecture has been implemented in nine

modules which we will see in high level design and

low level design in later chapters. Three major

divisions in this project are-

1. Transactions

2. Operations

3. Data models

Figure 1. System Architecture of Transaction Protocol

A. Data Access Layer

Data access layer is the one which exposes all the

possible operations on the data base to the outside

world. It will contain the DAO classes, DAO interfaces,

POJOs and Utilities are the internal components. All

the other modules of this project will be

communicating with the DAO layer for their data

access needs

B. Account Operations

Account operations module provides the following

functionalities to the end users of our project.

Figure 2. Account operations module

Here, the end user can perform various data operations.

The possible data operations include the write access,

read access, update, or delete access.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 606

Before the user can perform any of these mentioned

data operations, they have to select the database against

which the data operations must be performed. Account

operations module will be re-using the DAO layer to

provide the above functionalities.

C. Connection to Couch DB and Databases

COUCHDB adopts a semi-structured data model and

schema-less data base, based on the JSON (JavaScript

Object Notation) format. It proposes an original

approach, based on structured materialized views,

which can be produced from document collections. In

COUCH DB views are defined with the MAPREDUCE

paradigm,

The end user can create a connection to the CouchDB

by specifying the host name and the port number at the

moment of instance is installed. The end user can also

connect to a remote couch db that is present in a

different geographic location by just entering its host’s

IP address and the port number. The default port

number will be 5984.

A MapReduce framework simplifies implementing

parallel algorithms:

Figure 3. MapReduce design patterns

The user can create a new data base or view the list of

all existing databases is using this module. The user

can grant the permission on the database to the other

users in the transaction layer, i.e. the user can allow

other participant user to perform any of the transaction

operations on the database is created.

JavaScript Object Notation is a text based data

interchange format. JSON is built on two structures:

1. Obect: A collection of name and value pairs

2. Array: An ordered list of values

JSON is a simple text format initially designed for

serializing Javascript objects. Javascript is a scripting

language (distinct from Java) which is intensively used

in Web browsers for “dynamic HTML” applications.

Javascript function can access and modify the DOM

tree of the document displayed by a browser, i.e. Any

change made to this document, is instantaneously

reflected in the browser window, so that Java script

enables the creation of rich, interactive client-side

applications.

The basic construct of JSON is a key-value pair of the

form "key": value. Here is a first example, where the

value is a character string:

Eg:

Table 2

PSEUDO CODE OF JSON

Kannada_Movie_ making

{

"title": "Bhangarada Manusya",

"year": "1990",

"summary": "Be Self Employer,

"country": "India",

"state": "karnataka",

"language": "kannada",

"director": {

"first_name": "puttanna",

"last_name": "kanagal",

"actors": [{

"first_name": "Raj",

"last_name": "kumar",

"role": "Hero"},

{

"first_name": "Bharathi",

"last_name": "V",

"role": "Heroinn"}]

}

D. Transactions

Before the end user can perform the transaction; he/she

will have to select the database against which the

transaction has to be executed. The user is going to

select either data base is created by the user or the

database have granted the access by other users. Each

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 607

and every single operation in the transaction session

will be logged in the local mysql table and will be

available to view in the GUI. The end user can either

rollback or commit the transaction after all the data

operations have been performed.

IV. EXPERIMENTAL RESULTS

The proposed model transactional logic is implemented

as a prototype system using CouchDB for NoSQL

transactions. This proposed model is implemented by

java programming language.

Running one client, the time taking for one transaction

to complete is about 0.2 seconds. With one client,

experiments show that the system can handle between

30-40 transactions/second. With respect to correctness,

the system showed the correctness for every transaction,

i.e. for each read transactions it take just 0.04 seconds.

This experiment shows that the proposed system

maintains good level of performance, while ensuring

stronger consistency of the data in NoSQL databases.

Figure 3. Interaction of System components

Where,

1. Transaction Request

2. Commit

3. Service

4. Ack.

5. Rollback

6. Request

7. Service

8. Ack.

9. Transaction saved

10. Ack.

V. RESULT ANALYSIS

Creation of Databases:

Creation of Data Models:

Transaction logs:

Every transaction will be stored in the transaction logs

of the application as shown below:

VI. CONCLUSION

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 608

We proposed a new model, called M-Key transaction

model, for NoSQL database systems. It provides

NoSQL databases with standard ACID transactions

support that ensures consistency of data. The project

described the design of the proposed model and the

architecture within which it is implemented. As a proof

of concept the proposed approach is implemented using

real Couch DB database system.

VII. REFERENCES

[1]. D. DeWitt and J. Gray, "Parallel Database

Systems: The Future of High Performance

Database Systems," Commun. ACM, vol. 35(6),

Jun. 1992.

[2]. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,

D. a. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber, "Bigtable: A distributed

storage system for structured data," 7th Symp.

Oper. Syst. Des. Implement. (OSDI ’06), Nov. 6-

8, Seattle, USA, 2006.

[3]. A. Silberstein, A. Silberstein, B. F. Cooper, B. F.

Cooper, U. Srivastava, U. Srivastava, E. Vee, E.

Vee, R. Yerneni, R. Yerneni, R. Ramakrishnan,

and R. Ramakrishnan, "PNUTS: Yahoo!’s

Hosted Data Serving PLatform," Proc. 2008

ACM SIGMOD Int..

[4]. J. Baker, C. Bond, J. Corbett, and J. Furman,

"Megastore: Providing Scalable, Highly

Available Storage for Interactive Services.,"

Proc. Of the Conference on Innovative Data

system Research (CIDR 2011), 2011.

[5]. H. Berenson, P. Bernstein, J. Gray, J. Melton, E.

O’Neil, and P. O’Neil, "A Critique of ANSI SQL

Isolation Levels", 2007.

[6]. J. J. Levandoski, "Deuteronomy_: Transaction

Support for Cloud Data," Conf. on Innov. Data

Systems Research (CIDR), California, USA.vol.

48, 2011.

[7]. S. Das and A. El Abbadi, "G-Store_: A Scalable

Data Store for Transactional Multi key Access in

the Cloud," In: Proc. of the 1st ACM symposium

on Cloud computing. Indianapolis, USA, ACM,

2010.

[8]. W. Lloyd, M. J. Freedman, M. Kaminsky, and D.

G. Andersen, "Scalable Causal Consistency for

Wide-Area Storage with COPS. In: Proc. of the

23rd ACM Symposium on Operating Systems

Principles. Cascais, Portugal. 2011.

[9]. Z. Wei, G. Pierre, and C. H. Chi, "CloudTPS:

Scalable transactions for web applications in the

cloud," IEEE Trans. Serv. Comput., vol. 5, 2012.

[10]. A. Dey, A. Fekete, R. Nambiar, and U. Rohm,

"YCSB+T: Benchmarking web-scale

transactional databases," Proc. - Int. Conf. Data

Eng., 2014.

