
CSEIT1725129 | Received : 12 Sep 2017 | Accepted : 30 Sep 2017 | September-October-2017 [(2)5: 525-530]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

525

Identify And Eliminating Online Application Misbehaviors by

Static Analysis Approach
P Abdul Habeeb, Md Ateeq Ur Rahman

Department of Computer Science & Engineering, Shadan College of Engineering & Technology, Hyderabad, Telangana, India

ABSTRACT

An extensive research work on web application security has been continuing for over 10 years, the security of web

applications keeps on being a difficult issue. An essential some portion of that issue gets from unprotected source

code, regularly written in risky dialects like PHP. Source code static investigation devices are response for discover

vulnerabilities, however they have a tendency to produce false positives, and require extensive work for software

engineers to resolve the code. We investigate the utilization of a mix of strategies to find vulnerabilities in source

code with less false positives. We combine Taint analysis, which discovers hopeful vulnerabilities, with information

mining, to predict the presence of false positives. This approach unites two methodologies that are obviously

orthogonal: people coding the information about vulnerabilities (for Taint Analysis), joined with the apparently

orthogonal approach of consequently getting that information (with machine learning, for information mining).

Given this upgraded type of detection, we propose doing programmed code remedy by embeddings settles in the

source code. Our approach was executed in the WAP device, and an investigative assessment was performed with

an expansive arrangement of PHP applications. Our apparatus discovered 388 vulnerabilities in 1.4 million lines of

code. Its exactness and accuracy were roughly 5% superior to PhpMinerII's and 45% superior to Pixy's.

Keywords: Data Mining, Web Protection, Input Validation Vulnerabilities, Software Security, Source Code Static

Analysis, Web Applications, PHP

I. INTRODUCTION

SINCE its appearance in the Mid 1990s, the World

Wide Web advanced from a stage to get content and

other media to a structure for running complex web

applications. These applications show up in many

structures, from little home-made to huge scale

business administrations (e.g., Google Docs, Twitter,

Facebook). Be that as it may, web applications have

been tormented with security issues. For instance, a

current report demonstrates an expansion of web

assaults of around 33% of every 2012. Apparently, a

purpose behind the weakness of web applications is

that numerous software engineers need fitting learning

about secure coding, so they leave applications with

imperfections.

This paper investigates an approach for consequently

ensuring web applications while keeping the software

engineer tuned in. The approach comprises in

examining the web application source code hunting

down info approval vulnerabilities, and inserting

settles in a similar code to redress these defects. The

software engineer is kept tuned in by being permitted

to comprehend where the vulnerabilities were found,

and how they were adjusted. This approach contributes

straightforwardly to the security of web applications

by evacuating vulnerabilities, and by implication by

giving the software engineers a chance to gain from

their mix-ups. This last viewpoint is empowered by

inserting fixes that take after regular security coding

rehearses, so software engineers can take in these

practices by observing the vulnerabilities, and how

they were evacuated. We investigate the utilization of

a novel mix of techniques to recognize this sort of

weakness: static examination with information mining.

Static examination is a compelling component to

discover vulnerabilities in source code, however tends

to report numerous false positives (non-vulnerabilities)

because of its un decidability. This issue is especially

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 526

troublesome with dialects, for example, PHP that are

feebly written, and not formally determined.

Consequently, we supplement a type of static

investigation, pollute examination, with the utilization

of information mining to foresee the presence of false

positives. This arrangement consolidates two evidently

disjoint methodologies: people coding the information

about vulnerabilities (for corrupt investigation), in mix

with consequently acquiring that information (with

managed machine picking up supporting information

mining). To anticipate the presence of false positives,

we present the original thought of surveying if the

vulnerabilities distinguished are false positives

utilizing information mining. To do this evaluation, we

measure properties of the code that we saw to be

related with the nearness of false positives, and utilize

a mix of the three best positioning classifiers to signal

each powerlessness as false positive or not. We

investigate the utilization of a few classifiers: ID3,

C4.5/J48, Random Forest, Random Tree, K-NN, Naive

Bayes, Bayes Net, MLP, SVM, and Logistic

Regression. In addition, for each helplessness

delegated false positive, we utilize an enlistment

manage classifier to indicate which traits are related

with it. We investigate the JRip, PART, Prism, and

Ridor acceptance administer classifiers for this

objective. Classifiers are naturally designed utilizing

machine learning in view of marked helplessness

information.

Guaranteeing that the code redress is done accurately

requires surveying that the vulnerabilities are expelled,

and that the right conduct of the application is not

adjusted by the fixes.

Figure1. Proposed system framework

II. EXISTING AND PROPOSED SYSTEMS

2.1 Existing System:

There is a large corpus of related work, so we simply

outline the fundamental discussing by examining

papers, while leaving many others unreferenced to

preserve space. Static investigation tools mechanize

the evaluating of code, either source, paired, or

intermediate.

Taint analysis tools like CQUAL and Splint (both for

C code) utilize two qualifiers to comment on source

code: the untainted qualifier demonstrates either that a

function or parameter returns reliable information (e.g.,

a disinfection work), or a parameter of a function

requires dependable information (e.g., mysql_query).

The tainted qualifier implies that a capacity or a

parameter returns non-dependable information (e.g.,

functions that read client input).

2.1.1 Disadvantages of Existing System:

These different works did not expect to distinguish

bugs and recognize their location, yet to evaluate the

nature of the software as far as the common defects

and vulnerabilities. WAP does not utilize information

mining to recognize vulnerabilities, but rather to

predict whether the vulnerabilities found by taint

analysis are truly vulnerabilities or false positives.

2.2 Proposed System:

Our approach is about input validation vulnerabilities,

so this area introduces quickly some of them (those

deal with by the WAP tool). Inputs enter an

application through section point (e.g., $_GET), and

attempt a vulnerability by achieving a sensitive sink

(e.g., mysql_query). Most attacks include combine

typical contribution with meta-characters or metadata

(e.g., ', OR), so applications can be secured by placing

disinfection works in the ways between section point

and sensitive sinks.

SQL injection (SQLI) vulnerabilities are caused by the

utilization of string-building methods to execute SQL

queries. PHP code helpless against SQLI. This content

embeds in a SQL query as the username and password

gave by the client. In the event that the client is

noxious, he can give as username administrator' - ,

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 527

making the content execute a question that profits data

about the client administrator without the need of

providing a password.

2.2.1 Advantages of Proposed System:

 Ensuring that the code correction is done

effectively requires evaluating that the vulnerabilities

are deleted, and that the right conduct of the

application is not changed by the fixes.

 We propose utilizing program mutation and

regression testing to confirm, individually, that the

fixes work as they are customized to (blocking

vulnerable sources of info), and that the application

works same (with kind information inputs).

 An approach for enhancing the security of web

applications by consolidating data.

III. METHODOLOGY

This vulnerability can be displaced either by

disinfecting the sources of info (e.g., going before with

oblique punctuation line meta-characters, for example,

the prime), or by utilizing arranged explanations. We

selected the previous in light of the fact that it requires

less difficult adjustments to the code. Sterilization

relies upon the sensitive sink, i.e., in transit in which

the information is utilized. For SQL, and the MySQL

database, PHP gives the mysql_real_escape_ string

capacity.

We just present alternate vulnerabilities quickly

because of absence of space (with more data in). A

remote file inclusion (RFI) vulnerability enables

aggressors to insert a remote record containing PHP

code in the vulnerable program. Local file inclusion

(LFI) contrasts from RFI on the grounds that it embeds

a record from the local file system of the web

application (not a remote file). An directory traversal

or path traversal (DT-PT) assault comprises in an

aggressor getting to discretionary nearby records,

perhaps outside the site registry. Source code

disclosure (SCD) assaults dump source code and

arrangement records. A working framework charge

injection (OSCI) assault comprises in constraining the

application to execute a command characterized by the

assailant. A PHP code injection (PHPCI) vulnerability

enables an aggressor to supply code that is executed by

an eval explanation.

IV. IMPLEMENTATION & RESULTS

Cross-site scripting (XSS) assaults execute malicious

code (e.g., JavaScript) in the victim’s browser. Not

quite the same as alternate assaults we consider, a XSS

assault is not against a web application itself, but

rather against its clients. There are three fundamental

classes of XSS assaults relying upon how the

malevolent code is sent to the casualty (reflected or

non-determined, put away or relentless, and DOM-

based); however we clarify just reflected XSS for

quickness. A content helpless against XSS can have a

solitary line: resound "The assault includes persuading

the client to tap on a connection that gets to the web

application, sending it a content that is reflected by the

reverberate guideline and executed in the program.

This sort of assault can be forestalled by cleaning the

information, or by encoding the output, or both. The

last comprises in encoding meta-characters, for

example, in a way that they are translated as typical

characters, rather than HTML meta-characters.

Below are some of the screenshots of the process.

Output Screenshot 1: Registration page

In this page user need to create an account by

providing basic information like username, password,

email id, address and mobile number to register. Once

registration is done, user can sign in the application.

Output Screenshot 2: User Login page

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 528

A login page provides user to login in to the website

and access it, who had registered in above register

page. User login page have basic information like

username, password. If the user credentials are correct,

user can login in to the website.

Output Screenshot 3: File upload page

After login in to the cloud server, file upload page is

provided to upload the file data in cloud server.

Output Screenshot 4: File upload in DriveHQ

After login into the cloud server account, the user will

receive the uploaded file in cloud server.

Output Screenshot 5: file download

Here user can download the files. The download link

will be provided in this page.

Output Screenshot 6: SQL inj insert query

If user wants to insert data intentionally into the

database, the user will get blocked.

Output Screenshot 7: Admin login page

Admin login page have basic information like

username and password.

Output Screenshot 8: Admin Users page

Admin is the owner of all the users, here all the users

will be displayed with details.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 529

Output Screenshot 9: Files deleted page

Admin is authorized to delete the selected file.

Output Screenshot 10: Admin Attackers page

All the users who uploaded the source code file will

get displayed in the Admin Attackers page.

Output Screenshot 11: Blocked User

In this page admin is authorized to block the users who

had uploaded unwanted data or inserting query in the

database.

Output Screenshot 12: Ignored User

In this page admin is authorized to ignore the users

who had uploaded the file or inserted query by mistake

or unknowingly (as shown in the red circle).

V. CONCLUSION

This work presents our way was executed not past the

WAP device, more distant an experiential evaluation

was performed having a gigantic order of PHP

applications. This approach contributes clear to the

flexibility of web applications by removing

vulnerabilities, & not openly permitting the software

engineer review from their oversights. take agent

assemble of vulnerabilities acknowledged all sloppy

investigator, twofold check on the off chance that

they're malevolent picture or under different

conditions, separate a few qualities, evaluate their

work simple with the nearness of a mistaken viable,

measure successor classifiers to pick the right in any

case in constrain, and recognize the parameters from

the classifier. This last viewpoint is empowered by

inserting fixes like the back to back acknowledged

opportunity process rehearses, so nerd can hear the

specific practices by looking the vulnerabilities, and

exactly how the specific were unapproachable. WAP

additionally blights assessment and pen name for

finding vulnerabilities, still it goes again by likewise

adjusting the code.

VI. REFERENCES

[1]. G. T. Buehrer, B. W. Weide, and P. Sivilotti,

"Using parse tree validation to prevent SQL

injection attacks," in Proc. 5th Int. Workshop

Software Engineering and Middleware, Sep.

2005, pp. 106-113.

[2]. N. Jovanovic, C. Kruegel, and E. Kirda, "Precise

alias analysis for static detection of web

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 530

application vulnerabilities," inProc.

2006Workshop Programming Languages and

Analysis for Security, Jun. 2006, pp. 27-36.

[3]. G. Wassermann and Z. Su, "Sound and precise

analysis of web applications for injection

vulnerabilities," in Proc. 28th ACM SIGPLAN

Conf. Programming Language Design and

Implementation, 2007, pp. 32-41.

[4]. E. Arisholm, L. C. Briand, and E. B.

Johannessen, "A systematic and comprehensive

investigation of methods to build and evaluate

fault prediction models," J. Syst. Softw., vol. 83,

no. 1, pp. 2-17, 2010.

[5]. L. K. Shar and H. B. K. Tan, "Mining input

sanitization patterns for predicting SQL injection

and cross site scripting vulnerabilities," in Proc.

34th Int. Conf. Software Engineering, 2012, pp.

1293-1296.

[6]. T. Pietraszek and C. V. Berghe, "Defending

against injection attacks through context-

sensitive string evaluation," in Proc. 8th Int.

Conf. Recent Advances in Intrusion Detection,

2005, pp. 124-145.

[7]. S. Lessmann, B. Baesens, C. Mues, and S.

Pietsch, "Benchmarking classification models for

software defect prediction: A proposed

framework and novel findings," IEEE Trans.

Softw. Eng., vol. 34, no. 4, pp. 485-496, 2008.

