
CSEIT172518 | Received : 08 Sep 2017 | Accepted : 14 Sep 2017 | September-October-2017 [(2)4: 163-168]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

163

A Novel Temporal Cohesion Complexity Metric for Object-

Oriented Design
Syed Tanzeel Rabani, S. Gayathri

Department of Computer Science, St. Joseph‟s College (Autonomous), Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Software metric is used assess the quality of a software. There are many ways with which Software can be assessed

but the predominant criterion would be the assessment of software code. Reusability is increased by the ease of

maintenance of software code. Ease of maintenance also decreases the complexity in comprehending and

understanding the program. Software program can be modularized based on various characteristics. The two

measures Coupling and Cohesion can be used to access the quality of a design of these modules and their

interaction. Cohesion refers to the degree of relationship between elements inside a module. Modules with high

cohesion are preferred as they are associated with the reliability, maintainability, reusability and understandability of

a software. No metric is available so far to determine the presence of temporal cohesion. Here, a novel attempt has

been have made to evaluates the percentage of temporal cohesion involved in a module.

Keywords: Software metric, Coupling, Cohesion, Temporal cohesion (TC)

I. INTRODUCTION

Software engineering is an applied discipline of

software science which acquires engineering

approaches. It refers to the “application of a systematic,

disciplined, quantifiable approach to the development,

operation, and maintenance of software"[1]. The term

“metrics” is used to denote a set of specific

measurements taken on a particular item or process.

Software Metri is defined as “the continuous

application of measurement-based techniques to the

software development process and its products to

supply meaningful and timely management information,

together with the use of those techniques to improve

that process and its products” [2]. The primary

objectives of the software metrics are to assess and to

predict the quality of software. The main aim of

Software metric is to verify the coding for the program.

One of the most important and crucial segment of the

software development is the coding where the quality

can never be compromised. The programming can be

done either through procedural oriented approach or by

using object- oriented technology. Cohesion measures

the strength of the functionality expressed by a

software module, thus considered to be a justifying

factor for measuring the quality of program code.

There is the possibility of six types of cohesion in a

module viz coincidental, logical, temporal, procedural,

communicational, sequential and functional cohesion.

The quality of cohesion moves from coincidental to

function cohesion. Temporal cohesion exists when

parts of a module are grouped by when they are

processed (i, e) they are processed at a specific time in

program execution e.g. a function that is called after

catching an exception which closes open files, creates a

Temporal cohesion is when parts of a module are

grouped by as they are processed - the parts are

processed at a particular time in program execution (e.g.

a function which is called after catching an exception

which closes open files, creates an error log, and

notifies the user). As for now there is no specific

metric available to identify whether a module is

temporally cohesive or not. In this paper, a novel

metric is proposed to measure percentage of temporal

cohesion in a module to validate the quality of a

product.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 164

II. LITERATURE REVIEW

Gui et.al., [3] proposed two static metrics for cohesion

namely WTCOh and WICoh to assess the reusability of

java component. Authors proved that their metrics

differ from majority of the cohesion metrics in three

perspectives viz: they provide the measure to which

entities are coupled or resemble each other, they

quantify the indirect coupling and cohesion relationship

and they also provide the information about functional

complexity in classes and methods. By performing the

empirical validation of the new metrics, the authors

proved that that their metrics are better at measuring

and ranking the reusability of software components.

Mann et al., [4] proposed two metrics TCC and LCC

that were used to measure the design complexity of the

software. The authors improved the applicability of the

existing cohesion metrics to measure the requirement

of refactoring of classes.

Kaur et al., [5] reviewed more than 20 class cohesion

metrics in object oriented systems. This review was

helpful to collectively gain knowledge and would lead

to invention of several metrics such as Path

Connectivity Class cohesion metric (PCCC), similarity-

based Class Cohesion metric (SCC), Method- Method

through attributes Cohesion Metrics (MMAC) in future.

Desouky [6] proposed a metric called as RLCOM –

DESOUKY metric that measures the degree of

cohesion for objects of a class at runtime. These

metrics were validated by correlating them to bugs, so

that program behaviour could be observed during

runtime.

Marcus et al., [7] proposed various measures such as

C3, LSCM for the cohesion of Individual classes within

an Object-Oriented System. The authors measured the

proposed metrics using semantic information which

was embedded in the source code. New measure was

compared to the extensive set of existing measures by

using the case study. Differences and similarities were

discussed and analysed using existing and proposed

metric. The proposed metrics help to identify the

special cases like wrappers or classes that have the

implementation of several concepts which can be

refactored properly.

Hari Ganesh et al., [8] proposed the Coincidental-

Functional Cohesion Metric that intended to assess

whether the given module or class is coincidentally

cohesive or functionally cohesive. CFCOM is

calculated as follows:

∑⋂⋂

 (1)

 (2.1)

Here, AMi refers to the total number of attributes used

in method i

TAC refers to the total number of Attributes defined in

the class

The metric CFCOM functions by intersecting the

variables of methods in a class with the variables that

are defined in a class. The summation of the intersected

variables is then divided by the overall possibilities that

could be made within a class. Value 1 of CFCOM

represents that the class is functionally cohesive, and

Value 0 of CFCOM represents the class as

coincidentally cohesive. Coincidentally cohesive class

is an alarm for the programmers to redefine the class

into an inseparable unit.

Hari Ganesh et al., [9] proposed the Sequential

cohesion metric to evaluate the percentage of

sequential cohesion involved in a module. SCOM is

calculated as in Equation 2.

∑ ⋂

()
 (2) (2.2)

Here, n‟ denotes the total number of methods in the

module, „mi‟ denotes ith method whereas mi  mi+1 is

the intersection of attributes of mi and mi+1, and TAC

refers to the total number of attributes in a class. Strong

sequential cohesion is determined by the 100% of

SCOM whereas 0% denotes weak sequential cohesion.

Hari Ganesh et al., [10] proposed the communicational

cohesion metric (CCOM) for assessing the percentage

wise communicational cohesion in software modules.

The CCOM value of a module is given as under.

 () (2.3)

CM is the communicational measure which is derived

by multiplying the sum of intersecting variables

between methods by two and can be calculated below.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 165

 (4) (4) (2.4)

IVBM is calculated by the sum of Intersection of

Variables between Methods which is calculated as

below.

 ∑

 (5) (2.5)

Where, „n‟ denotes the total number of methods in the

module, „mi‟ and „mj‟ denotes i
th
 and j

th
methods

whereas mi  mj is the intersection of attributes of mi

and mj. NIVBM represents the sum Non-intersecting of

Variables Between Methods which is calculated as in

Equation. 6

 ∑ () ()

 (2.6)

A software module with the CCOM 100% value

denotes a strong communicational cohesion and 0%

value denotes weak communicational cohesion.

III. MOTIVATION

The poor design of program modules leads to the

complexity of software and increase the cost of

development. Maintenance is also costly for complex

software. The use of metrics could reduce the feasible

defects thus increasing the maintenance. Developing

metrics to identify the highly cohesive code saves both

time and cost for maintenance and reuse of project.

Module acceptance also depends upon the type of

cohesion, there is a need for inventing the new metrics

to classify different types of cohesion in order to

increase the quality of a software product.

IV. TEMPORAL COHESION METRIC

The proposed temporal cohesion metric is a novel

metric that evaluates the percentage of temporal

cohesion in a module. In Temporal cohesion statements

are grouped together into a procedure and executed

together during the same time-frame e.g. at the very

beginning at the very end of a program. the code is put

into a procedure and is executed because it is

convenient to do so at a certain time in the program.

Elements of a component in temporal cohesion is

related by timing. When any change is data structure is

made, it becomes difficult to look at numerous

components thereby increasing the regression fault.

Considering a module “On_Worst_Failure” that is

invoked when a worst failure occurs. At that time,

module performs several tasks that are not functionally

similar or logically related, but all tasks need to happen

at the moment of failure. The module might

 Cancel all request for services

 Cut power to all machines

 Notify the operator about failure

 Make an entry in the database about the

failure.

Temporal Cohesion (TC) is reserved for application

specific, non-reusable code.

TC is defined as the percentage of the summation of

coupling variables of the methods divided by the Total

number of variables in methods contains expression.

Coupling variables (CV) =
 Counter++ (if operand)

Temporal cohesion (TC) =

 × 100 (7)

Here, CV is the coupling variables and TVMCE is the

total number of variables in methods contains

expression.

A software possessing 100% of TC denotes a strong

temporal cohesion and 0% denotes weak temporal

cohesion. The implementation of temporal cohesion in

software enhances the modularity of software program.

V. ILLUSTRATION

The Illustration of TC metric is evaluated against the

three java programs which are described below.

Example 1

import java.util.Scanner;

class VariousOperations

{

int a, b, diff, sum;

Scanner scan =new Scanner(System.in);

public void get()

{

System.out.println("Enter the values of A and B");

a=scan.nextInt();

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 166

b= scan.nextInt();

}

public void add()

{

sum = a+b;

}

public void diff()

{

diff = a-b;

}

public void disp()

{

System.out.println("Addition is" + sum);

System.out.println("Subtraction is" + diff);

}

}

class mainmethod

{

public static void main(String args[])

{

VariousOperations obj = new VariousOperations();

obj.get();

obj.add();

obj.diff();

obj.disp();

}

}

In example 1, class VariousOperations has two

variables such as a and b and four methods namely get

() add(), sum() and disp (). Therefore, the total number

of attributes is 2 and the total number of methods (n) is

4. The method call is by calling the get () method is a

input method and disp () method is a output method.

The other two method add() and sum () is expression

method. Total number of variables contains expression

are two as follows:

Total number of coupling variables is (CV) {a,b} =2

 m1= get () = {a, b} => Input Method

 m2= add () = {a, b} => Expression Method

 m3= sum () = {a, b} => Expression Method

 m4= disp () = {a, b} => Output Method

Total Number of variables in methods contains

expressions (TVMCE) = 2

Coupling variables

CV=
 Counter ++ (if operand)

CV =2;

Temporal cohesion (TC) =

 × 100

TC=

 × 100 = 100%

As the TC value of various operations program is

100%, the class is said to be full temporal cohesive.

Example 2

import java.util.Scanner;

class Employee

{

int no;

float net;

String name;

Scanner scan =new Scanner(System.in);

public void get()

{

System.out.println("Enter the name");

name = scan.next();

System.out.println("Enter the number");

no = scan.nextInt();

}

public void sal()

{

System.out.print("Assign salary");

net = scan.nextFloat();

}

public void disp()

{

System.out.println("name is "+ name);

System.out.println("number is"+ no);

System.out.println("Salary is"+ net);

}

}

class mainmethodsec

{

public static void main(String args[])

{

Employee obj = new Employee();

obj.get();

obj.sal();

obj.disp();

}

}

In Example 2, Total number of coupling variables is

(CV) {name, number, sal } =3

m1=get () = {no, name} => Input Method

m2=sal() = {sal} => Expression Method

m4=disp() = {no,name,sal}=> Output Method

Total Number of variables in methods contains

expressions (TVMCE) = 1

Coupling variables

CV=
 Counter ++ (if operand)

CV =1;

Temporal cohesion (TC) =

 × 100

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 167

TC=

 × 100 = 100%

Example 3

import java.util.Scanner;

class square

{

double a;

Scanner scan =new Scanner(System.in);

public void sq1()

{

System.out.println("Enter the value for A");

a = scan.nextInt();

System.out.print("Square of a is" + a * a);

}

public void sq2()

{

System.out.println("enter the value for a again");

a = scan.nextInt();

System.out.println("square of a is " + a * a);

}

}

class mainmethod3

{

public static void main(String args[])

{

square obj = new square();

obj. sq1();

obj.sq2();

}

}

In Example 3, Total number of variables is {a} =1

m1=sq1 () = {a} => Expression Method

m2=sq2 () = {a} => Expression Method

Total Number of variables in methods contains

expressions (TVMCE) = 2

Coupling variables

CV=
 Counter ++ (if operand)

CV =1;

Temporal cohesion (TC) =

 × 100

TC =

 × 100 = 50%

The evaluated programs discussed above are compared

with the results of standard LCOM metrics. The results

are verified to check the enhancements of proposed

metric with the LCOM

Table 1 : Comparison of Standard LCOM with TC

Program name LCOM TC

VariousOperations 0 100%

Employee 1 100%

Square 0 50%

The values 1 in LCOM represent only the

existence of cohesion in methods, whereas the results

TC more specifically represents the amount of

Temporal cohesion involved in the program with an in-

depth analysis of the program. Moreover, the results of

LCOM do not precisely describe the differentiation on

1, but TC explicates that Employee is 100%, Square is

50% and VarriousOperation is 100% Temporal which

would be useful for further acceptance or modification.

VI. ANALYTICAL EVALUATION OF TC

Property 1: Non-coarseness – (∃P) (∃Q) (|P| ≠ |Q|)

Not all class can have the same complexity. If there are

„n‟ numbers of classes in the module, TC does not rank

all „n‟ classes as equally complex. TC value of two

different software‟s complexity such as example 1 and

example 2 are different from each other. Hence, this

metric is satisfied.

Property 2: Granularity

Consider „a‟ as a non-negative number then there

co.uld be only finite number of classes and programs

with complexity a. The value changes from one another;

hence, only finite number of classes have the same

complexity. Thus, this property is satisfied.

Property 3: Non-uniqueness

This property implies that there may be number of

modules having the same complexity. TC abides this

property, if the temporal cohesion of the modules is

similar, and the complexity of the modules is also

similar.

Property 4: Design details are important- (∃P) (∃Q)

(P ≡ Q and |P| ≠ |Q|)

 If two classes have the same functionality, they may

differ in implementation. If the design implementation

of two modules is different, TC produces different

complexity values for each module.

Property 5: Monotonicity- (∃P) (∃Q) (|P|≤ |P; Q| &

|Q| ≤ |P; Q|)

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 168

Let the two two modules P and Q be concatenated as

P+Q. Hence, the complexity value of the combined

class may be larger than the complexity of the

individual classes P or Q. TC abides this property if

there is a possibility of combining the modules P and Q

and would share the attributes of the class while

concatenation.

Property 6: Non-equivalence of interaction

The interaction between Example 1 and Example 2 are

different which results in different metric value as

shown. Hence, this property is also proved.

Property 7: Permutation

There are program bodies P and Q such that Q is

formed by permuting the order of the statements of P

and (|P| = |Q|). This property is not satisfied by the

Object-oriented programs.

Property 8: Renaming

If module P is renamed as Q then |R| = |S|. This

property requires that complexity of a module should

not get affected by renaming it. TC does not have any

impact over the change of name of module, hence TC

satisfies property 8.

Property 9: Interaction increases complexity

The property says that the metric value for complexity

of a class combined from two classes may be greater

than the sum of two individual class complexity

measures. This property is satisfied with TC as the

complexity of the combined classes increases than the

individual complexities. Summary of the TC validation

is described in Table II.

Table II : TC values against Weyuker‟s Metric

Metric P1 P2 P3 P4 P5 P6 P7 P8 P9

TC Y Y Y Y Y Y N Y Y

VII. CONCLUSION & FUTURE WORK

The primary focus of this paper is to insist upon the

invention of new software metrics based upon the most

important quality factor of Software called as Cohesion.

Temporal. cohesion metric is a software metric that is

incorporated in the testing phase of a software

development life cycle. It determines the percentage of

Temporal cohesion that exists in a module or in a

class. The software metric helps the developers to

evaluate their Software programs so that the coding

may be fine-tuned according to their need. The

temporal cohesion satisfies eight out of nine properties

of Weyuker‟s metric suite. Hence it is proven to be a

qualified metric to be deployed in software industries

so that quality products can be developed.

In future, the metric needs to be redefined as follows.

 In future, this work may be extended to invent

some more metrics that could possibly identify the

presence of all types of cohesion.

 An integrated approach is needed to include all

cohesion measures in a single metric.

 Cognitive aspect of complexity need to be included

to give more accurate measures.

 These metrics need to be evaluated with the real-

time projects.

VIII. REFERENCES

[1] IEEE, “IEEE Standard Glossary of Software

Engineering Terminology”, IEEE Std. 610.12-1990.

Institute of Electrical and Electronics Engineers, 1990.

[2] Paul Goodman, “Software Metrics Best Practices for

Successful IT Management”, Rothstein Associates Inc,

2004.

[3] Gui and Paul D. Scott. “Measuring software component

reusability by coupling and cohesion metrics”, Journal

of computers 4.9 pp- 797-805, 2009.

[4] Mann, Ankita, Sandeep Dalal and Dhreej Chillar. “An

effort to Improve Cohesion Metrics Using Inheritance”,

International Journal of computational Engineering

Research (IJCER), 2013

[5] Amardeep kaur and Puneet Jai kaur, Class Cohesion

metric in object Oriented Systems, international Journal

of Software and web sciences.

[6] Desouky, Amir F and Letha H. Etzkorn. “object

Oriented cohesion metrics: A Qualitative Emperical

Analysis of Runtime Behavior.” Proceeding of the

2014. ACM southeast Regional conference. ACM,

2014.

[7] Marcus, Andrian and Denys Poshyvanyk “The

Conceptual cohesion of Classes”, Software

maintenance. 2005. Proceedings of the 21
st
 IEEE

international conference on IEEE,2005.

[8] S. Hari Ganesh and H.B. Vincent Raj, “A Novel Co-

Functional Cohesion Complexity Metric: A quality

based Analysis”, International Journal of Applied

Engineering Research (IJAER), Volume 10, Number

85, 2015

[9] S. Hari Ganesh and H.B. Vincent Raj, “A Theoretical

Analysis SCOM: A Software Metric”, International

Journal of Control Theory and Applications (ISSN:

0974-5572), pp. 137-145, 2016

[10] S. Hari Ganesh and H.B. Vincent Raj, “CCOM – A

Communicational Cohesion Metric for Object Oriented

Programming”, International Journal of Computer

Applications (0975 – 8887) Volume 155 – No 5,

December 2016.

