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ABSTRACT 

 

MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A 

MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by 

multiple reduce tasks. Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce 

slots, and 2) the general execution constraints that map tasks are executed before reduce tasks, different job 

execution orders and map/reduce slot configurations for a MapReduce workload have significantly different 

performance and system utilization. This paper proposes two classes of algorithms to minimize the makespan and 

the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on the job 

ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our 

second class of algorithms considers the scenario that we can perform optimization for map/reduce slot 

configuration for a MapReduce workload. We perform simulations as well as experiments on Amazon EC2 and 

show that our proposed algorithms produce results that are up to 15 _ 80 percent better than currently unoptimized 

Hadoop, leading to significant reductions in running time in practice. 

Keywords: MapReduce, Hadoop, Flow-Shops, Scheduling Algorithm, Job Ordering. 

 

I. INTRODUCTION 

 
MAPREDUCE is a widely used computing model for 

large scale data processing in cloud computing. A 

MapReduce job consists of a set of map and reduces 

tasks, where reduce tasks are performed after the map 

tasks. Hadoop [2], an open source implementation of 

MapReduce, has been deployed in large clusters 

containing thousands of machines by companies such 

as Amazon and Facebook. In that cluster and data 

center environments, MapReduce and Hadoop are used 

to support batch processing for jobs submitted from 

multiple users (i.e., MapReduce workloads). Despite 

many research efforts devoted to improving the 

performance of a single MapReduce job (e.g., [3], [11]), 

there is relatively little attention paid to the system 

performance of MapReduce workloads. Therefore, this 

paper tries to improve the performance of MapReduce 

workloads. Makespan and total completion time (TCT) 

are two key performance metrics. Generally, makespan 

is defined as the time period since the start of the first 

job until the completion of the last job for a set of jobs. 

It considers the computation time of jobs and is often 

used to measure the performance and utilization 

efficiency of a system. In contrast, total completion 

time is referred to as the sum of completed time periods 

for all jobs since the start of the first job. It is a 

generalized makespan with queuing time (i.e., waiting 

time) included. We can use it to measure the 

satisfaction of the system from a single job’s 

perspective through dividing  In this paper, we target at 

one subset of production MapReduce workloads that 

consist of a set of independent jobs (e.g., each of jobs 

processes distinct data sets with no dependency 

between each other) with different approaches. For 

dependent jobs (i.e., MapReduce workflow), one 

MapReduce can only start only when its previous 
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dependent jobs finish the computation subject to the 

input-output data dependency. In contrast, for 

independent jobs, there is an overlap computation 

between two jobs, i.e., when the current job completes 

its map-phase computation and starts its reduce-phase 

computation, the next job can begin to perform its 

mapphase computation.   

 

 
 

II. MOTIVATION 
 

In this section, we show the importance and challenge 

of job ordering optimization as well as map/reduce slot 

configuration optimization by giving motivating 

examples experimentally.  

 

2.1 Motivation for Job Ordering Optimization  

 

To motivate the importance of job ordering 

optimization for MapReduce workloads on 

performance, we ran a Testbed workload consisting of 

four jobs (J1 J4) from Table 2 of Section 7.1 in an 

Amazon EC2 Hadoop cluster configured with map 

slots of 57 and reduce slots of 19. We do so by 

comparing the performance of all possible job 

submission orders.  

  

 2.2 Motivation for Slot Configuration Optimization  

 

To motivate the importance of optimization on 

map/reduce slot configuration, we perform a simulation 

experiment with a Testbed MapReduce workload 

consisting of four jobs, assuming that a cluster 

consisting of 10 slave nodes each configured with eight 

slots, i.e., the total number of map slots plus reduce 

slots for the cluster is 80, as shown in Fig. 2. Our 

experiments are three folds. First, we examine the 

influence of slot configuration to the overall 

performance by running jobs in all possible map/reduce 

slot configurations in practice (i.e., configure map slots 

from 1 to 7 per slave node), under an arbitrary job 

submission order. The experimental results are given in 

Fig. 2a. It can be noted that the maximum performance 

difference between the worst-case map/reduce slot 

configuration (e.g., 10=70) and the optimal one (e.g., 

60=20) is huge, up to   399%. Second, we consider the 

influence of job orderings on the performance by 

running jobs with all possible job orders, under an 

optimal map/reduce slot configuration (e.g., 60/20). 

Fig. 2 b shows that the performance difference of the 

worst-case job submission order and the optimal one 

can be large up to   33%, depending on the workload 

characteristic. Third, we evaluate and compare the 

optimal (minimum) makespan as well as its 

corresponding optimal map/reduce slot configuration 

for all possible job submission orders. Fig. 2c 

illustrates the optimal map/reduce slot configuration 

(i.e., blue and green bar) as well as its corresponding 

optimal makespan (i.e., red curve) for all 4! ¼ 24 

possible job submission orders, sorted by makespan in 

non-decreasing order. The results show that there are 

varied optimal configurations of map/reduce slots for 

different job submission orders. Moreover, it’s worth 

noting that the maximum performance difference 

between the worst-case job order and the optimal job 

order each under its corresponding optimal map/reduce 

slot configuration, is   28:7%.  In summary, the above 

motivating example poses three key challenging issues: 

(1). Different map/reduce slot configurations will have 

different performance under a given job order (2). Even 

under the optimal map/ reduce slot configuration, 

different job submission orders will result in varied 

performance (3). The optimal configurations of 

map/reduce slots, as well as its corresponding optimal 

makespan, are different under different job submission 

orders. 

 

III. RELATED WORKS 
 

In this section, we give an overview of related work 

from two aspects. First, we review batch job ordering 

optimization work in HPC literature. Second, we 

summarize the MapReduce job optimization work 

proposed in recent years.  

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=


Volume 2 | Issue 4 | July-August -2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 69 

 3.1 Job Ordering Optimization  

 

The batch job ordering problem has been extensively 

studied in the high-performance computing literature 

[25]. Minimizing the makespan has been shown to be 

NP-hard [25], and a number of approximation and 

heuristic algorithms (e.g., [14], [34]) have been 

proposed. In addition, there has been work on bi-

criteria optimization which aims to minimize makespan 

and total completion time simultaneously, such as [13]. 

The previous works all focused on the single-stage 

parallelism, where each job only has a single stage. In 

contrast, MapReduce is an interleaved parallel and 

sequential computation model [23] which is related to 

the two-stage hybrid flow shop (2HFS) problem [17]. 

Minimizing the makespan for 2HFS is strongly NP-

hard when at least one stage contains multiple 

processors [16]. There has been a large body of 

approximation and heuristic algorithms (e.g., [6], [24]) 

proposed for 2HFS. Additionally, there has been work 

(e.g., [31]) targeted at the bi-criteria optimization of 

both makespan and total completion time. The main 

difference between MapReduce and traditional 2HFS is 

that MapReduce jobs can run multiple map and reduce 

tasks concurrently in each phase, whereas 2HFS allows 

at most one task to be processed at a time. In this way, 

MapReduce is more similar to the two-stage hybrid 

flow shop with multiprocessor tasks (2HFSMT) [28], 

[29] problem, which allows a task at each stage can be 

processed on multiple processors simultaneously. 

However, there is a requirement in 2HFSMT that a task 

at each stage can be scheduled only when the number 

of processors it requires is satisfied; otherwise, the task 

needs to wait [28]. In contrast, the number of running 

map/reduce tasks for a MapReduce job can be 

dynamically scaled up and down as idle map/ reduce 

slots become available. In summary, MapReduce is a 

new computation model that is similar to but different 

from other models mentioned above. The works that 

are most related to ours are [26], [41]. In [26], Moseley 

et al. present an offline 12approximation algorithm for 

minimizing the total flow time of the jobs; this is the 

sum of the differences between the finishing and arrival 

times of all the jobs. Verma et al. [41] propose two 

algorithms for makespan optimization. One is a greedy 

algorithm job ordering method based on Johnson’s 

Rule. Another is a heuristic algorithm called Balanced 

Pool. They discuss and evaluate the algorithms 

experimentally. We follow their job ordering approach 

(i.e., the MK_JR algorithm in our paper). But our main 

contributions go beyond it in a number of significant 

aspects. First, we prove a 1 þ d upper bound on the 

approximation ratio of our MK_JR algorithm. Second, 

we give the relationship between upper-bound 

makespan, lower-bound makespan, and the 

corresponding job orders.  

 

3.2 MapReduce Job Optimization  

 

There is a large body of research work that focuses on 

the optimization for MapReduce jobs. One 

optimization policy focuses on the architectural design 

and optimization issues. Jiang et al. [21] proposed a set 

of general low-level optimizations including improving 

I/O speed, utilizing indexes, using fingerprinting for 

faster key comparisons, and block size tuning. 

Rasmussen et al. [33] presented an I/O-efficient 

MapReduce system called Themis that improves the 

performance of MapReduce by minimizing the number 

of I/O operations. Likewise, Sailfish [32] improves 

MapReduce’s performance through more efficient disk 

I/O. It mitigates partitioning skew in MapReduce by 

choosing the number of reduce tasks and intermediate 

data partitioning dynamically at runtime, using an 

index constructed from intermediate data. There are 

also methods that reduce I/O cost in MapReduce by 

using indexing structures (e.g., Hadoop++ [12]), 

column-oriented storage (e.g., [15]). Polo et al. [30] 

proposed a scheduling technique and implemented a 

prototype called Adaptive Scheduler that can 

adaptively manage the workload performance with the 

awareness of hardware heterogeneity, distributed 

storage to meet user’s deadline requirement. Wolf et al. 

[42] propose a flexible scheduling allocation scheme 

called FLEX, which can optimize any of a variety of 

standard scheduling theory metrics, such as response 

time, stretch, and makespan. Tang et al. [35], [37] 

proposed a dynamic slot allocation system called 

Dynamic MR to improve the performance for the slot-

based Hadoop MRv1, by allowing map (or reduce) 

tasks can be run on map slots and reduce slots. 

Adjusting Hadoop configuration is another 

optimization policy, including [7], [18], [19]. For 

example, Starfish [19] is a self-tuning framework that 

can adjust the Hadoop’s configuration automatically 

for a MapReduce job such that the utilization of 

Hadoop cluster can be maximized, based on the cost-

based model and sampling technique. Herodotou and 

Babu [18] propose a system named Elastisizer for 

cluster sizing optimization and MapReduce job-level 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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parameter configurations optimization, on the cloud 

platform, to meet desired requirements on execution 

time and cost for a given workload, based on a careful 

mix of job profiling, estimation using black-box and 

white-box models and simulation. In contrast, Agarwal 

et al. [7] present a system RoPE that can re-optimize 

data parallel jobs by adapting execution plans based on 

estimates of code and data properties. Another 

optimization policy is to share work and eliminate 

redundant data access and computation. Agrawal et al. 

[8] provide a method to maximize scan sharing by 

grouping MapReduce jobs into batches so that 

sequential scans of large files are shared among many 

simultaneous jobs as possible. MR Share [27] is a 

sharing framework that provides three possible work-

sharing opportunities, including scan sharing, mapped 

outputs sharing, and Map function sharing across 

multiple MapReduce jobs, to avoid performing 

redundant work and thereby save processing time. 

There is also an optimization policy of pipelining. 

MapReduce Online [10] is such a modified MapReduce 

system to support online aggregation for MapReduce 

jobs that run continuously by pipelining data within a 

job and between jobs. In contrast, we improve the 

performance for a MapReduce workload by 

maximizing the cluster utilization as much as possible, 

through optimizing the map/reduce slot configuration 

and the job submission order. All these studies are 

complementary to our study and our approach can be 

incorporated into these modified MapReduce 

frameworks (e.g., MRShare [27], MapReduce Online 

[10]) for further performance improvement. 

 

IV. SYSTEM ANALYSIS 

 

4.1 Existing System 

 

A MapReduce job consists of a set of map and reduce 

tasks, where reduce tasks are performed after the map 

tasks. Hadoop, an open source implementation of 

MapReduce, has been deployed in large clusters 

containing thousands of machines by companies such 

as Amazon and Facebook. In those cluster and data 

center environments, MapReduce and Hadoop are used 

to support batch processing for jobs submitted from 

multiple users (i.e., MapReduce workloads). Despite 

many research efforts devoted to improve the 

performance of a single MapReduce job, there is 

relatively little attention paid to the system 

performance of MapReduce workloads. Therefore, this 

paper tries to improve the performance of MapReduce 

workloads. 

 

Disadvantages of Existing System: 

1. The previous works all focused on the single-stage 

parallelism, where each job only has a single stage. 

2. Slow performance of the Map Reducer workloads 

 

4.2 Proposed System 

 

In this paper, we target at one subset of production 

MapReduce workloads that consist of a set of 

independent jobs (e.g., each of jobs processes distinct 

data sets with no dependency between each other) with 

different approaches. For dependent jobs (i.e., 

MapReduce workflow), one MapReduce can only start 

only when its previous dependent jobs finish the 

computation subject to the input-output data 

dependency. In contrast, for independent jobs, there is 

an overlap computation between two jobs, i.e., when 

the current job completes its map-phase computation 

and starts its reduce-phase computation, the next job 

can begin to perform its map-phase computation in a 

pipeline processing mode by possessing the released 

map slots from its previous job. 

 

Advantages of Proposed System: 

1.  

2. We propose a bi-criteria heuristic algorithm to optimize 

makespan and total completion time simultaneously. 

3.  

4. Propose slot configuration algorithms for makespan 

and total completion time. We also show that there is a 

proportional feature for them, which is very important 

and can be used to address the time efficiency problem 

of proposed enumeration algorithms for a large size of 

total slots. 

 

4.3 Algorithm 

 

function Kernighan-Lin(G(V,E)):  

determine a balanced initial partition of the nodes into 

sets A and B       

       do 

       compute D values for all a in A and b in B 

       let gv, av, and bv be empty lists 

       for (n := 1 to |V|/2) 

       find a from A and b from B, such that g = D[a] +     

D[b] - 2*c(a, b) is maximal 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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       remove a and b from further consideration in this 

pass 

       add g to gv, a to av, and b to bv 

       update D values for the elements of A = A \ a and 

B = B \ b 

        end for 

       find k which maximizes g_max, the sum of 

gv[1],...,gv[k] 

        if (g_max > 0) then 

        Exchange av[1],av[2],...,av[k] with 

bv[1],bv[2],...,bv[k] 

       until (g_max <= 0) 

      return G(V,E) 

 

V. YSTEM ARCHITECTURE 
 

 
5.1 Modules 

 

1. Job Ordering Optimization Module 

2. Slot Configuration Optimization Module 

 

Module Description: 

 

1. Job Ordering Optimization: 

This module we can significantly improve the total 

completion time of MapReduce. For Map Reducer 

workloads we use the job ordering optimization 

algorithms MK_JR and MK_TCT_JR. 

 

2. Slot Configuration Optimization: 

The slot configuration can have a significant impact on 

performance for MapReduce workloads. We propose 

several enumeration algorithms for map/reduce slot 

configuration optimization with regard to the makespan 

and total completion time of a MapReduce workload. 

 

VI. APPLICATIONS 
 

1. Social Media: The Large data is generated from the 

social media platforms such as YouTube, Facebook, 

Twitter, LinkedIn, and Flickr. The amount of DATA 

being uploaded to the internet is rapidly increasing, 

with Facebook users uploading over 2.5 billion new 

Data every month. It can be used to improve 

applications performance by greatly reducing the file 

size and network bandwidth required to display your 

application. 2. Business Applications: online shopping 

application where the every item has data is shown. 

Company’s data and scan copies of various documents. 

3. Satellite images: This includes weather data or the 

data that the government captures in its satellite 

surveillance imagery. 4. Photographs and video: This 

includes security, surveillance, and traffic video.  

 

VII. CONCLUSION 
 

This paper focuses on the job ordering and map/reduce 

slot configuration issues for MapReduce production 

workloads that run periodically in a data warehouse, 

where the average execution time of map/reduce tasks 

for a MapReduce job can be profiled from the history 

run, under the FIFO scheduling in a Hadoop cluster. 

Two performance metrics are considered, i.e., 

makespan and total completion time. We first focus on 

the makespan. We propose job ordering optimization 

algorithm and map/reduce slot configuration 

optimization algorithm. We observe that the total 

completion time can be poor subject to getting the 

optimal makespan, therefore, we further propose a new 

greedy job ordering algorithm and a map/reduce slot 

configuration algorithm to minimize the makespan and 

total completion time together. The theoretical analysis 

is also given for our proposed heuristic algorithms, 

including approximation ratio, upper and lower bounds 

on makespan. Finally, we conduct extensive 

experiments to validate the effectiveness of our 

proposed algorithms and their theoretical results. 
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