
CSEIT17252 | Received : 26 August 2017 | Accepted : 06 Sep 2017 | September-October-2017 [(2)4: 67-72]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

67

Dynamic Job Ordering and Slot Configurations for Mapreduce

Workloads Using Heuristic Algorithm
M. Praveen Kumar

1
, S. P. Santhoshkumar

2
, S. Syed Shajahaan

3

1
Assistant Professor, Department of Information Technology, Rathinam Technical Campus, Coimbatore, Tamil Nadu, India

2
Assistant Professor, Department of Computer Science and Engineering, Rathinam Technical Campus, Coimbatore, Tamil Nadu,

India
3
Head of the Department, Department of Information Technology, Rathinam Technical Campus, Coimbatore, Tamil Nadu,

India

ABSTRACT

MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A

MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by

multiple reduce tasks. Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce

slots, and 2) the general execution constraints that map tasks are executed before reduce tasks, different job

execution orders and map/reduce slot configurations for a MapReduce workload have significantly different

performance and system utilization. This paper proposes two classes of algorithms to minimize the makespan and

the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on the job

ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our

second class of algorithms considers the scenario that we can perform optimization for map/reduce slot

configuration for a MapReduce workload. We perform simulations as well as experiments on Amazon EC2 and

show that our proposed algorithms produce results that are up to 15 _ 80 percent better than currently unoptimized

Hadoop, leading to significant reductions in running time in practice.

Keywords: MapReduce, Hadoop, Flow-Shops, Scheduling Algorithm, Job Ordering.

I. INTRODUCTION

MAPREDUCE is a widely used computing model for

large scale data processing in cloud computing. A

MapReduce job consists of a set of map and reduces

tasks, where reduce tasks are performed after the map

tasks. Hadoop [2], an open source implementation of

MapReduce, has been deployed in large clusters

containing thousands of machines by companies such

as Amazon and Facebook. In that cluster and data

center environments, MapReduce and Hadoop are used

to support batch processing for jobs submitted from

multiple users (i.e., MapReduce workloads). Despite

many research efforts devoted to improving the

performance of a single MapReduce job (e.g., [3], [11]),

there is relatively little attention paid to the system

performance of MapReduce workloads. Therefore, this

paper tries to improve the performance of MapReduce

workloads. Makespan and total completion time (TCT)

are two key performance metrics. Generally, makespan

is defined as the time period since the start of the first

job until the completion of the last job for a set of jobs.

It considers the computation time of jobs and is often

used to measure the performance and utilization

efficiency of a system. In contrast, total completion

time is referred to as the sum of completed time periods

for all jobs since the start of the first job. It is a

generalized makespan with queuing time (i.e., waiting

time) included. We can use it to measure the

satisfaction of the system from a single job’s

perspective through dividing In this paper, we target at

one subset of production MapReduce workloads that

consist of a set of independent jobs (e.g., each of jobs

processes distinct data sets with no dependency

between each other) with different approaches. For

dependent jobs (i.e., MapReduce workflow), one

MapReduce can only start only when its previous

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 68

dependent jobs finish the computation subject to the

input-output data dependency. In contrast, for

independent jobs, there is an overlap computation

between two jobs, i.e., when the current job completes

its map-phase computation and starts its reduce-phase

computation, the next job can begin to perform its

mapphase computation.

II. MOTIVATION

In this section, we show the importance and challenge

of job ordering optimization as well as map/reduce slot

configuration optimization by giving motivating

examples experimentally.

2.1 Motivation for Job Ordering Optimization

To motivate the importance of job ordering

optimization for MapReduce workloads on

performance, we ran a Testbed workload consisting of

four jobs (J1 J4) from Table 2 of Section 7.1 in an

Amazon EC2 Hadoop cluster configured with map

slots of 57 and reduce slots of 19. We do so by

comparing the performance of all possible job

submission orders.

 2.2 Motivation for Slot Configuration Optimization

To motivate the importance of optimization on

map/reduce slot configuration, we perform a simulation

experiment with a Testbed MapReduce workload

consisting of four jobs, assuming that a cluster

consisting of 10 slave nodes each configured with eight

slots, i.e., the total number of map slots plus reduce

slots for the cluster is 80, as shown in Fig. 2. Our

experiments are three folds. First, we examine the

influence of slot configuration to the overall

performance by running jobs in all possible map/reduce

slot configurations in practice (i.e., configure map slots

from 1 to 7 per slave node), under an arbitrary job

submission order. The experimental results are given in

Fig. 2a. It can be noted that the maximum performance

difference between the worst-case map/reduce slot

configuration (e.g., 10=70) and the optimal one (e.g.,

60=20) is huge, up to 399%. Second, we consider the

influence of job orderings on the performance by

running jobs with all possible job orders, under an

optimal map/reduce slot configuration (e.g., 60/20).

Fig. 2 b shows that the performance difference of the

worst-case job submission order and the optimal one

can be large up to 33%, depending on the workload

characteristic. Third, we evaluate and compare the

optimal (minimum) makespan as well as its

corresponding optimal map/reduce slot configuration

for all possible job submission orders. Fig. 2c

illustrates the optimal map/reduce slot configuration

(i.e., blue and green bar) as well as its corresponding

optimal makespan (i.e., red curve) for all 4! ¼ 24

possible job submission orders, sorted by makespan in

non-decreasing order. The results show that there are

varied optimal configurations of map/reduce slots for

different job submission orders. Moreover, it’s worth

noting that the maximum performance difference

between the worst-case job order and the optimal job

order each under its corresponding optimal map/reduce

slot configuration, is 28:7%. In summary, the above

motivating example poses three key challenging issues:

(1). Different map/reduce slot configurations will have

different performance under a given job order (2). Even

under the optimal map/ reduce slot configuration,

different job submission orders will result in varied

performance (3). The optimal configurations of

map/reduce slots, as well as its corresponding optimal

makespan, are different under different job submission

orders.

III. RELATED WORKS

In this section, we give an overview of related work

from two aspects. First, we review batch job ordering

optimization work in HPC literature. Second, we

summarize the MapReduce job optimization work

proposed in recent years.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 69

 3.1 Job Ordering Optimization

The batch job ordering problem has been extensively

studied in the high-performance computing literature

[25]. Minimizing the makespan has been shown to be

NP-hard [25], and a number of approximation and

heuristic algorithms (e.g., [14], [34]) have been

proposed. In addition, there has been work on bi-

criteria optimization which aims to minimize makespan

and total completion time simultaneously, such as [13].

The previous works all focused on the single-stage

parallelism, where each job only has a single stage. In

contrast, MapReduce is an interleaved parallel and

sequential computation model [23] which is related to

the two-stage hybrid flow shop (2HFS) problem [17].

Minimizing the makespan for 2HFS is strongly NP-

hard when at least one stage contains multiple

processors [16]. There has been a large body of

approximation and heuristic algorithms (e.g., [6], [24])

proposed for 2HFS. Additionally, there has been work

(e.g., [31]) targeted at the bi-criteria optimization of

both makespan and total completion time. The main

difference between MapReduce and traditional 2HFS is

that MapReduce jobs can run multiple map and reduce

tasks concurrently in each phase, whereas 2HFS allows

at most one task to be processed at a time. In this way,

MapReduce is more similar to the two-stage hybrid

flow shop with multiprocessor tasks (2HFSMT) [28],

[29] problem, which allows a task at each stage can be

processed on multiple processors simultaneously.

However, there is a requirement in 2HFSMT that a task

at each stage can be scheduled only when the number

of processors it requires is satisfied; otherwise, the task

needs to wait [28]. In contrast, the number of running

map/reduce tasks for a MapReduce job can be

dynamically scaled up and down as idle map/ reduce

slots become available. In summary, MapReduce is a

new computation model that is similar to but different

from other models mentioned above. The works that

are most related to ours are [26], [41]. In [26], Moseley

et al. present an offline 12approximation algorithm for

minimizing the total flow time of the jobs; this is the

sum of the differences between the finishing and arrival

times of all the jobs. Verma et al. [41] propose two

algorithms for makespan optimization. One is a greedy

algorithm job ordering method based on Johnson’s

Rule. Another is a heuristic algorithm called Balanced

Pool. They discuss and evaluate the algorithms

experimentally. We follow their job ordering approach

(i.e., the MK_JR algorithm in our paper). But our main

contributions go beyond it in a number of significant

aspects. First, we prove a 1 þ d upper bound on the

approximation ratio of our MK_JR algorithm. Second,

we give the relationship between upper-bound

makespan, lower-bound makespan, and the

corresponding job orders.

3.2 MapReduce Job Optimization

There is a large body of research work that focuses on

the optimization for MapReduce jobs. One

optimization policy focuses on the architectural design

and optimization issues. Jiang et al. [21] proposed a set

of general low-level optimizations including improving

I/O speed, utilizing indexes, using fingerprinting for

faster key comparisons, and block size tuning.

Rasmussen et al. [33] presented an I/O-efficient

MapReduce system called Themis that improves the

performance of MapReduce by minimizing the number

of I/O operations. Likewise, Sailfish [32] improves

MapReduce’s performance through more efficient disk

I/O. It mitigates partitioning skew in MapReduce by

choosing the number of reduce tasks and intermediate

data partitioning dynamically at runtime, using an

index constructed from intermediate data. There are

also methods that reduce I/O cost in MapReduce by

using indexing structures (e.g., Hadoop++ [12]),

column-oriented storage (e.g., [15]). Polo et al. [30]

proposed a scheduling technique and implemented a

prototype called Adaptive Scheduler that can

adaptively manage the workload performance with the

awareness of hardware heterogeneity, distributed

storage to meet user’s deadline requirement. Wolf et al.

[42] propose a flexible scheduling allocation scheme

called FLEX, which can optimize any of a variety of

standard scheduling theory metrics, such as response

time, stretch, and makespan. Tang et al. [35], [37]

proposed a dynamic slot allocation system called

Dynamic MR to improve the performance for the slot-

based Hadoop MRv1, by allowing map (or reduce)

tasks can be run on map slots and reduce slots.

Adjusting Hadoop configuration is another

optimization policy, including [7], [18], [19]. For

example, Starfish [19] is a self-tuning framework that

can adjust the Hadoop’s configuration automatically

for a MapReduce job such that the utilization of

Hadoop cluster can be maximized, based on the cost-

based model and sampling technique. Herodotou and

Babu [18] propose a system named Elastisizer for

cluster sizing optimization and MapReduce job-level

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 70

parameter configurations optimization, on the cloud

platform, to meet desired requirements on execution

time and cost for a given workload, based on a careful

mix of job profiling, estimation using black-box and

white-box models and simulation. In contrast, Agarwal

et al. [7] present a system RoPE that can re-optimize

data parallel jobs by adapting execution plans based on

estimates of code and data properties. Another

optimization policy is to share work and eliminate

redundant data access and computation. Agrawal et al.

[8] provide a method to maximize scan sharing by

grouping MapReduce jobs into batches so that

sequential scans of large files are shared among many

simultaneous jobs as possible. MR Share [27] is a

sharing framework that provides three possible work-

sharing opportunities, including scan sharing, mapped

outputs sharing, and Map function sharing across

multiple MapReduce jobs, to avoid performing

redundant work and thereby save processing time.

There is also an optimization policy of pipelining.

MapReduce Online [10] is such a modified MapReduce

system to support online aggregation for MapReduce

jobs that run continuously by pipelining data within a

job and between jobs. In contrast, we improve the

performance for a MapReduce workload by

maximizing the cluster utilization as much as possible,

through optimizing the map/reduce slot configuration

and the job submission order. All these studies are

complementary to our study and our approach can be

incorporated into these modified MapReduce

frameworks (e.g., MRShare [27], MapReduce Online

[10]) for further performance improvement.

IV. SYSTEM ANALYSIS

4.1 Existing System

A MapReduce job consists of a set of map and reduce

tasks, where reduce tasks are performed after the map

tasks. Hadoop, an open source implementation of

MapReduce, has been deployed in large clusters

containing thousands of machines by companies such

as Amazon and Facebook. In those cluster and data

center environments, MapReduce and Hadoop are used

to support batch processing for jobs submitted from

multiple users (i.e., MapReduce workloads). Despite

many research efforts devoted to improve the

performance of a single MapReduce job, there is

relatively little attention paid to the system

performance of MapReduce workloads. Therefore, this

paper tries to improve the performance of MapReduce

workloads.

Disadvantages of Existing System:

1. The previous works all focused on the single-stage

parallelism, where each job only has a single stage.

2. Slow performance of the Map Reducer workloads

4.2 Proposed System

In this paper, we target at one subset of production

MapReduce workloads that consist of a set of

independent jobs (e.g., each of jobs processes distinct

data sets with no dependency between each other) with

different approaches. For dependent jobs (i.e.,

MapReduce workflow), one MapReduce can only start

only when its previous dependent jobs finish the

computation subject to the input-output data

dependency. In contrast, for independent jobs, there is

an overlap computation between two jobs, i.e., when

the current job completes its map-phase computation

and starts its reduce-phase computation, the next job

can begin to perform its map-phase computation in a

pipeline processing mode by possessing the released

map slots from its previous job.

Advantages of Proposed System:

1.

2. We propose a bi-criteria heuristic algorithm to optimize

makespan and total completion time simultaneously.

3.

4. Propose slot configuration algorithms for makespan

and total completion time. We also show that there is a

proportional feature for them, which is very important

and can be used to address the time efficiency problem

of proposed enumeration algorithms for a large size of

total slots.

4.3 Algorithm

function Kernighan-Lin(G(V,E)):

determine a balanced initial partition of the nodes into

sets A and B

 do

 compute D values for all a in A and b in B

 let gv, av, and bv be empty lists

 for (n := 1 to |V|/2)

 find a from A and b from B, such that g = D[a] +

D[b] - 2*c(a, b) is maximal

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 71

 remove a and b from further consideration in this

pass

 add g to gv, a to av, and b to bv

 update D values for the elements of A = A \ a and

B = B \ b

 end for

 find k which maximizes g_max, the sum of

gv[1],...,gv[k]

 if (g_max > 0) then

 Exchange av[1],av[2],...,av[k] with

bv[1],bv[2],...,bv[k]

 until (g_max <= 0)

 return G(V,E)

V. YSTEM ARCHITECTURE

5.1 Modules

1. Job Ordering Optimization Module

2. Slot Configuration Optimization Module

Module Description:

1. Job Ordering Optimization:

This module we can significantly improve the total

completion time of MapReduce. For Map Reducer

workloads we use the job ordering optimization

algorithms MK_JR and MK_TCT_JR.

2. Slot Configuration Optimization:

The slot configuration can have a significant impact on

performance for MapReduce workloads. We propose

several enumeration algorithms for map/reduce slot

configuration optimization with regard to the makespan

and total completion time of a MapReduce workload.

VI. APPLICATIONS

1. Social Media: The Large data is generated from the

social media platforms such as YouTube, Facebook,

Twitter, LinkedIn, and Flickr. The amount of DATA

being uploaded to the internet is rapidly increasing,

with Facebook users uploading over 2.5 billion new

Data every month. It can be used to improve

applications performance by greatly reducing the file

size and network bandwidth required to display your

application. 2. Business Applications: online shopping

application where the every item has data is shown.

Company’s data and scan copies of various documents.

3. Satellite images: This includes weather data or the

data that the government captures in its satellite

surveillance imagery. 4. Photographs and video: This

includes security, surveillance, and traffic video.

VII. CONCLUSION

This paper focuses on the job ordering and map/reduce

slot configuration issues for MapReduce production

workloads that run periodically in a data warehouse,

where the average execution time of map/reduce tasks

for a MapReduce job can be profiled from the history

run, under the FIFO scheduling in a Hadoop cluster.

Two performance metrics are considered, i.e.,

makespan and total completion time. We first focus on

the makespan. We propose job ordering optimization

algorithm and map/reduce slot configuration

optimization algorithm. We observe that the total

completion time can be poor subject to getting the

optimal makespan, therefore, we further propose a new

greedy job ordering algorithm and a map/reduce slot

configuration algorithm to minimize the makespan and

total completion time together. The theoretical analysis

is also given for our proposed heuristic algorithms,

including approximation ratio, upper and lower bounds

on makespan. Finally, we conduct extensive

experiments to validate the effectiveness of our

proposed algorithms and their theoretical results.

VIII. ACKNOWLEDGEMENT

Mr. M. Praveenkumar is currently working as an

Assistant Professor in Information Technology at

Rathinam Technical Campus, Tamilnadu, India. He

received a Master of Engineering from Anna

University of Technology, Coimbatore, India.

Mr. S. P. Santhoshkumar is currently working as an

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 72

Assistant Professor in Computer Science and

Engineering at Rathinam Technical Campus,

Tamilnadu, India. He received a Master of Engineering

from Anna University of Technology, Coimbatore,

India.

Mr. S. Syed Sajahaan is currently working as Head of

the Department in Computer Science Engineering and

information Technology at Rathinam Technical

Campus, Tamilnadu, India. He received a Master of

Engineering from Anna University of Technology,

Coimbatore, India.

IX. REFERENCES

[1]. http://hadoop.apache.org/docs/r1.2.1/fairschedule

r.html

[2]. http://hadoop.apache.org/docs/r2.3.0/hadoop-

yarn/hadoop yarnsite/CapacityScheduler.html

[3]. Ching-Chi Lin, Pangfeng Liu, and Jan-JanWu.

Energy-aware virtual machine dynamic provision

and scheduling for cloud,. In Cloud

Computing(CLOUD), 2011 IEEE Inter national

Conference on, pages 736–737, july 2011.

[4]. Anton Beloglazov and Rajkumar Buyya. Energy

efficient allocation of virtual machines in cloud

data centers, In 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid

Computing, pages 577–578, 2010.

[5]. YibinWei,Ling Tian , Research on cloud design

resources scheduling based on Genetic

Algorithm, 2012 International Conference on

systems and informatics(ICSAI 2012)

[6]. Chen, K. ; Powers, J. ; Guo, S. ; Tian, F. CRESP:

Towards Optimal Resource Provisioning for

MapReduce Computing in PublicClouds ,

IEEETransactions on Parallel and Distributed

Systems ,Volume: 25 , Issue: 6 Publication Year:

2014 , Page(s): 1403–1412.

[7]. Xiaohong Zhang ; Yuhong Feng ; Shengzhong

Feng ;Jianping Fan ; Zhong Ming An effective

data locality aware task scheduling method for

MapReduce framework in heterogeneous

environments, 2011 International Conference on

Cloud and Service Computing (CSC)Year: 2011 ,

Page(s):235-242

[8]. Sewoog Kim ; Dongwoo Kang ; Jongmoo Choi ;

Junmo Kim Burstiness-aware I/O scheduler for

MapReduce framework on virtualized

environments , 2014 International Conference on

Big Data and Smart Computing (BIGCOMP)

Publication Year: 2014 , Page(s): 305–308.

[9]. Hammoud, M. ; Rehman, M.S. ; Sakr, M.F.

Center-of Gravity Reduce Task Scheduling to

Lower MapReduce Network Traffic , 2012 IEEE

5th International Conference on Cloud

Computing (CLOUD) Publication Year: 2012 ,

Page(s): 49–58.

[10]. . olo, . Carrera, . ecerra, . orres, .

 yguad e, M. teinder, and . Whalley.

Performance-driven task co-scheduling for

MapReduce environments. In 12th IEEE/IFIP

Network Operations and Management

Symposium. ACM, 2010.

[11]. L. Phan, Z. Zhang, B. Loo, and I. Lee. Real-time

MapReduce Scheduling. Tech. Report No. MS-

CIS-10-32, UPenn, 2010.

[12]. B. Palanisamy, A. Singh, L. Liu, and B. Jain.

Purlieus: localityaware resource allocation for

MapReduce in a cloud. In Proceedings of 2011

International Conference for High Performance

Computing, Networking, Storage and Analysis

(SC), 2011.

[13]. Resource management with VMware DRS

http://www.vmware.com/pdf/vmware_drs_wp.p

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

