
CSEIT1725215 | Received : 16 Oct 2017 | Accepted : 31 Oct 2017 | September-October-2017 [(2)5: 976-982]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

976

Challenges and Security Issues of NOsql Databases
Dr. Deepak Chahal

1
 , Dr.Latika Kharb

2
, Manhar Gupta

3

1,2
Associate Professor (IT), Jagan Institute of Management Studies, New Delhi. India

3
MCA, Department of IT, Jagan Institute of Management Studies, New Delhi. India

ABSTRACT

In this paper we will be discussing about what are the security problems in NOSQL, what concerns has to be taken

care to solve the security issues in NOSQL while the data is in moving or in rest, during authentication and

authorization. This paper also includes the vulnerabilities in NOSQL as well as Injections in NOSQL from which

un-authorized person can breach the security. Multi model Heterogeneous problems explain the detail concept of

the security issue when types of databases merge with each other. It includes the explanation of different layers exist

in NOSQL with some particular databases issue. In last some currents issues or breaches in NOSQL has been

explained.

Keywords : Middleware,Validation, Database, Security, Authentication, Key-Value.

I. INTRODUCTION

In today’s World, security is the main concern to be

taken care as the data is being increasing; more the data

breaching is taking place. As the technology increasing

day by day, hacking skills are also increasing with

respect to it. Security is very much important in today’s

scenario. In past, it would say that we live in the world

of people, but now days we live in the world of data.

Data is somewhere like a diamond in our industry

which is very precious. So to protect this diamond,

security is the key role has to be taken care[1].

Data is shared or transfer between thousands of nodes

in NOSQL Database, so the entry point of each node

will be multiple. Un-authorized access can be made

from any of these nodes. So we have to protect all the

nodes to protect the data. Security is very much

complex in NOSQL Database. So to protect the

sensitive data, security model should be properly

managed and maintained as it can become a challenge.

Third party software or companies are providing the

security layer to protect the data breach. PCI-DSS (The

Payment Card Industry Data Security Standard) is a

standard that is used to provide some standards

protocols or rules and regulation to organization for

major card (Visa, Master card etc) transaction. Datastax

is an organization which is providing a layer for

protection in a NOSQL database. So via this, some

NOSQL databases are allowed to achieve PCI-DSS

standards[2].

NOSQL does not provide in built security itself, even

the documentation of all the NOSQL databases says to

use our database in a “Trusted Environment” which is

not possible. For some security, it depends on a

middleware or we can say a security layer which is

used to provide some security, like a firewall. Almost

in all NOSQL database, by default administrator user

authentication is turned off, very weak password

storage etc. are some security problems which we will

discuss later on. That is why; NOSQL is on the most

wanted list in Hackers World.

Data is shared or transfer between thousands of nodes

in NOSQL Database, so the entry point of each node

will be multiple. Un-authorized access can be made

from any of these nodes. So we have to protect all the

nodes to protect the data. Security is very much

complex in NOSQL Database. So to protect the

sensitive data, security model should be properly

managed and maintained as it can become a challenge.

II. Security Concerns In Nosql Databases

Before selecting a correct NOSQL database for your

organization, you have to focus on the security

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 977

concerns. It’s a good practice to gather security

concerns before implementing it. There are several

security concerns which decide how strong security

exists in a database.

2.1 Database

 Data At Rest

It means data is in the database and is not using. We

have to implement security when the data is in database

to protect it, as we cannot store the data without any

security. It can be stolen by some loop holes in the

database. Security can be provided by the physical

layer itself or by using any third party software.

So to protect the data while it is in rest, we have to

implement some kind of encryption to the data or

hierarchal password protection. So no unauthorized

person can see the data without the decryption with the

help of the key which only user knows.

 Data In Motion

It means data is in the flow, moving from database to

the application layer or the system. Like in financial

banking, out account details fetch form the bank

database and displays in ATM screen. That data is very

precious and security is the key role. If any of the data

stolen while moving from bank database to ATM

screen, then your account can be hacked very easily[3].

So data should be encrypted while data is moving back

and forth. We can also use tagging, we can tag the data

package weather it is confidential, high level, medium

level or low level. So while sending the package, we

will tag the package so that it is ease to know which

kind of data is being transferring and what kind of

security has to be taken care.

 Data In Use

It means that data is using in the application, data is

displaying in the user screen. As the data is in the

encrypted format, it will not be in readable form. So to

read the data, decryption has to be done with the help

of key, so that the data is visible on the screen to the

user.

2.2 Authentication

It is another concern which is required to protect your

database. It is the process of validating the authorized

person only to access the database. A simple login

which is used to access the database, if the login fails

then that person cannot access the database controls.

In some companies, having large databases, sometimes

need to communicate with the centralized service that

used to validate the credentials. Generally, the service

is designed such a way so that all the company

databases can use it, which is known as Single Sign-on

(SSO). If SSO interface is not being used, then by

using directory access API, database validates

users. Lightweight Directory Access

Protocol (LDAP) and Stored Lightweight Directory

Access Protocol (SLDAP) are commonly version

used to accomplish it.

There are six types of authentication[4]:

 Basic access

 Digest access

 Public key

 Multifactor

 Kerberos

 Simple Authentication and Security Layer (SASL)

 Basic Access Authentication

This is the Basic level for authenticating the database

user to access. The credentials are transferred in the

http header in a simple plain-text format that can be

fetched easily by a hacker. For providing some security,

Basic Access Authentication should always be used

with Secure Socket Layer (SSL) or Transport Layer

Security (TLS). For the connection, there is no need for

Web browser cookies or Handshaking.

 Digest Access Authentication

It is much better than Basic authentication but it is

quite complicated to use as it required some additional

handshaking for connection between the client and the

database, we can use it over un-encrypted SSL/TLS

layer. It is not recommended as highly secure

authentication as uses MD5 hash function for

transferring the data. For increasing password security,

Digest Access Authentication is a good way to

implement.

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 978

 Public Key Authentication

Public key authentication basically works on

Asymmetric Cryptography. Basic concept of

Asymmetric Cryptography is that it uses a pair of keys

which are dependent on each other as one key is used

to encrypt the sender’s data which is known as Private

Key, while other key is used to decrypt the data on the

receiver’s end which is known as Public Key. The

basic drawback of this authentication is that if a hacker

has access to your private key, then he can gain access

to your database completely. So the security is only

depends on the private keys.

 Multifactor Authentication

Multifactor authentication is not a single way for

access as it requires two or more modes for

authenticating the user which provide more security

and reliability.

Example: If you allow your GMAIL account

multifactor authentication, first you have to provide

your credentials to login, then a pattern of words and

number will be sent to your verified mobile number,

which you have to type in the form to gain access to

your account. If any of the two means login password

or PIN you received on mobile phone is incorrect, then

you will not be able to access your GMAIL account.

 Kerbos Protocol Authentication

Kerbos Protocol authentication is used in an insecure

network for a secure connection. For authentication, it

uses some third party application and uses

cryptography for data transfer. After establishing the

trusted Connection, database transfer the data to the

server for the verification of the credentials. Each

session access policy is controlled by Central

Authority.

 Simple Authentication And Security Layer

Simple Authentication and Security Layer (SASL) is a

framework that is used to provide certain set of

protocols for trusted Communication. It defines some

set of rule and regulation that can be used by any

NOSQL database to authenticate and establishing a

connection.

2.3 Authorization

After authenticating the credentials, next step is to give

the permission to access the data according to their

specific role. In authentication, it occurs only once per

connection, when credentials are passed. But

authorization is a complex process as one mistake can

totally impact the overall security and performance of

the database. Permissions have to be applied in many

data items that are why, it is much more complex[5].

Authorization is dependent on level of abstraction and

this level depends on categorization of the data which

is needed to be authorized.

As you move downward, the level of security increases

and performance decreases. Let us discuss on each of

the level.

 Database:

It is the basic level to apply roles and permission after

credentials verified. Security is low as it is the basic

level but performance of the database is very high as no

further verification will be there. It consists of number

of collections. Example: While entering to your office

building, your ID card is checked and if you have

permission according to your role to enter the building,

then only you are accessed else you cannot enter to the

building[6].

 Collection:

It is much more secure than database as it is 2
nd

 level of

abstraction. Security is higher than basic level but

performance is also less than basic level. It is the

collection of many documents. Example: in your office

building, you have entered. Now to enter in a particular

floor, you have to get permissions. Only if you have

permission according to your role, then only you can

get access to enter in a particular floor of the building.

 Document:

Security increased as it is 3
rd

 level of abstraction but

performance is also decreased. It is the collection of

many elements. Now the permissions are applied on

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 979

the document level, so it will affect the performance.

Example: in your office building, you have entered

your desired floor, now to access the particular room,

you have to get permissions. If you have desired

permission, then only you are accessed to the room.

 Element:

It is the most secure level of abstraction but also

performance impact is very large. Element is nothing

but the data which you have to access. Example: in

your office building, you have entered the floor and the

desired room. Now to work on your project, you need

to have the permission. According to your role and

permission, you will be granted to work on the project

else not.

2.4 Data Encryption

While the data is in moving, or in resting, data has to

be in an encrypted form to protect from a hacker. So

with the help of digital signature or encryption we can

verify the data that weather it has been modified or not

while it was in the move from database to the

application. This verification can be done either at the

application level or at the database level or both sides.

NOSQL does not provide any built in feature to

achieve this kind of security, so by the use of third

party application, we can achieve this.

There are many tools by which we can encrypt the data.

Even we can combine the encryption and the digital

signature for much more security. We can use private

and public keys combining with the digitally signed

certificates. Main problem is to detect where the

encryption has to be applied, weather on the application

layer or the database layer. Providing the encryption on

both side will affect the performance as the time will

increase.

If encryption process is provided in Database layer,

then data accessing and storing method will have a

centralized control but if the encryption process is in

the application layer, then the control will be on each

module. The main drawback of this process is that any

changes done in the encryption algorithm by the

external un-authorized person will completely affect

the security issue and performance.

In some NOSQL Databases, self created encryption

algorithm is used so that it will be very tough to change

the algorithm by any external un-authorized person.

This will surely increase the security if any major

project is there. The US National Institute of Standard

and Technology (NIST) have specified some standard

that consist of multiple level of certification for

cryptography libraries. If your database holds the entire

standard then you can easily transmit the data by

encryption.

III. Vulnerabilities In Nosql

Vulnerabilities are the weakness or loop holes from

which a hacker or un-authorized person can enter the

database and get the illegal authorization to access.

Some of the NOSQL vulnerabilities are [8]:

 Connection Pooling

 Key Brute-forcing

 HTTP REST API

 Denial of Services (DOS) Attack

3.1 Connection Pooling

Let us understand this concept using a NOSQL

Database. CouchDB can be implemented with the help

of RESTful API. Many concepts like Cross-Database,

Pool-Access, Configuration etc. can be implemented

directly by RESTful API. Even CouchDB Handlers are

also implemented via RESTful API, which are very

easy to use. As it is easy, the attack vectors are also

easier than before. If a hacker is successful to

manipulate the connector string, then he can even

restart the database.

Connector example: NOSQL.connect

(http://couchDB/_restart);

There are many CouchDB handlers which allow us to

execute many database commands by just manipulating

the connector like _sleep, _session, _utils, _stats etc. If

a hacker is able to change the configuration by

RESTful Interface, then he can even change the

JavaScript interpreter to its custom file.

Cross Database can be easily implemented in

Traditional SQL System. Cross database in nothing just

jumping from one database to another when an SQL

Injection performed. But in NOSQL it is harder to

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 980

implement. But not impossible, we can implement with

the help of CouchDB connector by passing the

variables in it. As connector is established, then you

can have full access to that particular context only or

you can say limited to the context.

Ex: NOSQL.connect

(http://.$PoolDatabase.”/nosql18/”)

3.2 Key Brute-forcing

To understand this concept, we are using NOSQL Key-

Value Databases. In a key-value database, key is the

most important thing that needs to be secured. Key

management has to be very strong in this type of

database. There are some companies who offer key

management services or we can create our own key

also. If any un-authorized person gets the key, then

your data will be in a big problem.

Key Brute-forcing is an attack that is used for this type

of databases to search the key. This attack is very

strong to decrypt any key or find any key. If a strong

encryption is not there to protect the key, then this

attack can easily breaks down the security and a hacker

can get access. Performance issues are also there as if

the key has so many encryption and decryption, then it

will directly affect the database performance. So it

depends upon the architecture and client library

implementation.

Key-Value database are schema free, so there is no

need to find any schema. This factor consider as the

drawback of this type of database as security can be

breached up easily. Smart work can be done by a

hacker, by statically analyzing the Key before sending

it in the attack. According to the judgment or analyzing,

process of Key Brute-forcing can be speed up and

easily fetch the key.

For securing the data from this attack on the application

level, we need to be very careful. As this attack can

breach the database security and our data can be

fetched. As there is no schema, if we are storing all the

confidential records in a single key value database and

the database is brute forced, then all the data can be

manipulated of fetched by un-authorized person. So

database model should be good, your application logics

should be strong, data has to be segmented by

application itself. That is called modeling the data.

Some other factors need to be considered also, like key

space and key size as key has to be protected.

Algorithms which are generating unpredictable key

with a good algorithm that should be used in this

database type for storing data. Key should be

challenged based like some captchas can be used so

that it will prevent the Brute force attack.

3.3 Http Rest Api

The client applications can be used to query the

database from which the speed of the application can

be enhanced. The REST API allows querying the

database from the client application directly whether it

is a HTML based application or any other. The data can

be fetched or manipulated by running the particular

queries the application provides. Mostly these

applications provide the HTTP queries to be performed

on the database. There is no mediate driver included in

the structure to query the data and very fast way to

execute the query related to the database. This although,

increases the threats to the database because the

attacker can attack the database using the skills to

hamper the HTML pages or the application pages and

inserting the codes between to access the database. The

APIs, behind the firewalls, allows CSRF attacks to

attack the database by exposing it to the client

application. This will allow the user to go into the

environment of the application and once the client

embedded with the arbitrary queries of the hacker to

enter the database, the injection will be performed

easily. This will also allow the user to enter the HTML

page and run the POST command from the form of the

website to attack the database. Thus, this hinders the

security of the database a lot.

3.4 Denial of Services (Dos) Attack

As we have discussed there are many attacks which

hinders the functionality of the user or the database.

Denial of Service Attack targets the database server and

prevents the database from the access of the valid users

such that it can slow down or shut down the system and

maliciously add the code into a file which is in the

input form of the website form to directly take over the

control of the database. This gives the attacker a power

to manipulate access or change the data according to

his wish which can be a big threat to the security of the

database. The attack is being done by sending the

queries or the data in the form of queries repeatedly to

the database within an infinite loop which hinders the

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 981

usage of valid users and unexpectedly shuts down the

system.

To prevent your database from the DOS Attack, we can

perform a pre define check for repeated rapid request

coming from the same IP Address. If we found any

external query fired repeatedly from the same system or

the IP Address very frequently, we can abort the

system from attending any more queries from the same

IP Address.

IV. Current Nosql Data Security Issues

Exposure of 600 TB of MongoDB database on the

internet

As we all know, MongoDB is very famous and very

efficient multi model database structure providing a

very high level of security in the market. But hazards

are never hazards if they do not come with information

and security. Almost 600 TB of the data of MongoDB

database was exposed to the open source internet

system reportedly as every application builds its

versions and prototypes before booting and finally

deploying the application or API online.

This has been one of the most popular databases used

by many of the famous companies and organizations

such as, Sourceforge to The New York Times, and

LinkedIn. Few said that around 20-30 thousand GBs of

the information of MongoDB database is openly

available on the internet without any permission seeks

or authentication and authorization.

The MongoDB didn’t have any of the problems or the

flaws but still by using the older version which was

unable to bind itself from the local host, made the huge

failure and the leakage of the data.

During the investigation of the matter, Matherly’s main

focus was growing popularity of the MongoDB

database. It came to know that the versions the older

version till 2.4.14, which was the last version to follow

this local host, rule. Roman Shtylman told about the

problem and reported in Feb, 2012. But this

accidentally occurred flaw became so big that it took

about 2 year and even little more to be recovered by

MongoDB developers.

It’s after effects were even worse. It affected many

further versions of the MongoDB. Mainly 2.4.9, 2.4.10

and 2.3.7 were affected a lot. Many of the instances of

the database were exposed publicly. This also led to

many further problems and security issues faced by

MongoDB.

V. CONCLUSION

In NOSQL, there are lot of security issues that need to

be handled very carefully otherwise data can be hacked.

As we have seen there are many attacks that can be

performed on NOSQL Databases and security are very

minimal to prevent these attacks. While comparing to

the most 2 popular NOSQL Databases, MongoDB and

Cassandra, we get to know that both databases lack

encryption for the files, authentication is very weak and

authorization is very simple and access to all the

vulnerabilities like SQL Injection or DOS Attack.

NOSQL is weak in terms of security. So in future,

more security features should be included in NOSQL to

make it stronger.

Key Terminology & Definitions

Middleware - For connecting any 2 layers, here in the

document it is usually database and the application. A

middleware is needed that acts as a bridge between the

2 layers. This bridge is mostly used for loading a driver

and conversion of environment variable. Sometimes the

middleware is not created by the application provider

and handle by default but it is better to improvise the

middleware efficient enough for the performance.

Validation - An application is very prone to error

which can occur due to the wrong input of processing

made by the mechanism. This can be handled by

implementing form the default checking. This

mechanism is called mechanism. Validation is

generally done for the empty arguments, invalid

argument etc.

VI. REFERENCES

[1]. List of NoSQL Databases [currently 225]. (n.d.).

Retrieved May 17, 2016, from http://nosql-

database.org

[2]. Main Page. (n.d.). Retrieved May 16, 2016, from

http://en.wikipedia.org/wiki/Main_Page

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 982

[3]. NoSQL, no security? (n.d.). Retrieved May 19,

2016, from

http://www.slideshare.net/wurbanski/nosql-no-

security

[4]. Cassandra. (n.d.). Retrieved May 15, 2016, from

http://cassandra.apache.org

[5]. MongoDB for GIANT Ideas. (n.d.). Retrieved

May 18, 2016, from http://mongodb.com

[6]. Retrieved May 19, 2016, from

http://www.youtube.com/?app=desktop

[7]. Ron, A., Shulman-Peleg, A., & Bronshtein, E.

(2015). No SQL, No Injections. 9th Workshop on

Web 2.0 Security and Privacy (W2SP) 2015,

doi:10.1109/msp.2015.06

[8]. Ron, A., Shulman-Peleg, A., & Puzanov, A.

(2016). Analysis and Mitigation of NoSQL

Injections. IEEE Security & Privacy IEEE Secur.

Privacy, 14(2), 30-39. doi:10.1109/msp.2016.36

