
CSEIT1725223 | Received : 08 Nov 2017 | Accepted : 19 Nov 2017 | November-December-2017 [(2)6: 219-223]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

219

An Empirical Principle for the Data Flow Analysis in State

Transition Systems
A. Guerrouat

University of Bahrain, Zallaq, Bahrain

ABSTRACT

This paper focuses on the analysis of the data flow in formal specifications of embedded systems founded on state

transition models. There are several properties of formal specifications that result from considering the data flow,

however, these are irrelevant if only the control flow is assumed. The typical examples of formal models supporting

data flow are extended finite state machines (EFSMs) whereas finite state machines (FSMs) specify only the control

flow. It is crucial to predict issues that could be caused by the data flow because their occurrence in later stages of

the system development or during operation would be very costly and critical. As it is practically hard to state the

presence/absence of such issues analytically, this will be done empirically.

Keywords : Formal Analysis And Testing, Data Flow Analysis, Extended Finite State Machines, Formal Methods

I. INTRODUCTION

Because of the growing complexity of embedded

systems the software development process becomes a

costly and error-prone activity. The cost factor plays a

central role in today’s industrial competition, for

instance between car manufacturers. The development

of competitive and efficient products is imposing more

and more constraints to the design of embedded

systems. One of the means to reach this goal are formal

methods to support the different phases of system

development, i.e. specification, analysis, synthesis and

testing.

Formal methods have proven their effectiveness in the

analysis of complex requirements like those for

communicating systems [1] [2]. Furthermore, they

provide a solid mean for unambiguous specification

and rigorous analysis. They are based on formal

methods such (E)FSMs (‘extended’ finite state

machines) and differ from conventional programming

languages by providing not only a formal syntax but

also a formal semantic [4]. Moreover, the application of

formal specification increases the confidence in the

software and the system. Especially in the area of

safety-critical systems, the use of formal techniques is

highly recommended [5].

Statecharts as a semi-formal model is actually the

mostly used formalism to specify requirements for

embedded systems [4]. Although Statecharts provide

graphical facilities, they might lack formal and

unambiguous semantics. Therefore, detecting bugs,

incompleteness and inconsistencies becomes a difficult

task. Furthermore, they are only used to describe

behavioral requirements. To alleviate these lacks many

authors try to combine formal notations like Z with

state-transition models [5]. Z is based on set theory and

first order predicate logic and used for data structuring

and abstracting. However, approaches developed

around this model do not clearly address test data

generation methods for e.g. analysis and testing

purposes.

The finite state machine model is very popular in the

control flow specification of state/transition-based

systems and many related analysis methods have been

developed [6] [7]. These support a formal test

derivation which can be used for validation and testing

purposes. However, finite state machines lack to deal

with the data flow. This shortcoming can be alleviated

by using the extended finite state machine model

(EFSM). However, the test generation and specification

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 220

analysis task cannot be easily applied in this case due

to the data flow.

In this paper, we discuss the data flow related problems

for analysis and testing of embedded system

specifications and implementations. Assuming an

extended state machine model, these problems will be

first identified, and then an empirical solution based on

analysis and testing expert knowledge is proposed.

Because an analytical solution would be very hard to

achieve due to the huge amount of data to be

considered.

The paper is organized as follows. Section 2 reviews

the conventional finite state machine and the extended

finite state machine models regarding data flow

specification. In Section 3, we define the issues related

to the data flow and propose the basic idea for

localization. Finally, Section 4 concludes the paper.

II. Basic Concepts

In this section, we first review the formal definition of

the used data flow model (EFSM) and compare it to the

simple finite state machine model (FSM). These

definitions are needed for subsequent section. Further,

we functionally explain the meaning of such model for

concrete systems such as embedded systems.

2.1 Definitions

2.1.1 Finite State Machines

A finite state machine (FSM) is a 5-tuple <S, I, O, T,

s0>, where S is a non-empty finite set of states, I a non-

empty set of inputs, O a non-empty finite set of outputs,

T S x I x O x S the set of transition relations, and

s0S the initial state of the FSM.

A transition t T of an FSM is a 4-tuple <s, i, o, s’>,

where sS is a current state (the edge), iI an input,

oO an output related to s and I, and s’S the next

state (a tail state) related to s and i.

The FSM model are well appropriate for specifying

only the control flow, but not for the data flow that

could be associated with the control flow. Thus, simple

FSMs have been extended to support the data flow

through additional state variables, interaction

parameters and guard conditions associated with

transitions that could be also temporal conditions.

2.1.2 Extended Finite State Machines

An extended finite state machine (EFSM) is a 7-tuple

<S, C, I, O, T, s0, c0> where S is a non-empty set of

main states, C=dom(v1) x … x dom(vn) a non empty

countable set of contexts with viV, V the non-empty

finite set of variables and dom(vi) a non-empty

countable set referred to as the domain of vi, I a non-

empty finite set of inputs, O a non-empty set of outputs,

T S x C x I x O x S x C the set of transition relations,

s0S the initial main state, and c0C the initial context

of the EFSM.

A main state may consist of sub-states. A context is a

specific assignment of values to the variables. A

transition tT of an EFSM is a 6-tuple <s, c, i, o, s’, c’>

where sS is a current main state, cC a current

context, iI an input, oO an output, s’S a next main

state, and c’C a next context.

A transition may be characterized, in addition to its

current and next state and input and output interactions

and context, by a so-called guard condition or enabling

predicate. This represents a condition on a state

transition and the related output to be carried out, once

the predicate ‘fires’. All usual logical and comparative

operators and, or, =, > etc. are allowed in a predicate.

Thus, a transition takes place only if its enabling

predicate fires. It depends on the current FSM state

with additional variables and the concrete variables

values (context) of the input. Therefore, we introduce a

so-called p-EFSM in which the enabling predicates on

transitions are explicitly specified.

A guarded or predicated EFSM is resulted from the

above defined EFSM and presented as follows:

A guarded or predicated extended finite state machine

(p-EFSM) is an 8-tuple <S, C, I, P, O, T, s0, c0> where

S is a non-empty set of main states, C=dom(v1) x … x

dom(vn) a non-empty countable set of contexts with

viV, V a non-empty finite set of variables, and dom(vi)

a non-empty countable set referred to as the domain of

vi, P a countable set of predicates (possibly empty), I a

non-empty finite set of inputs, O a non-empty finite set

of outputs, T S x C x I x P x O x S x C a set of

transition relations, s0S the initial main state, and

c0C the initial context of the p-EFSM.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 221

A transition tT of a p-EFSM is a 7-tuple <s, c, I, p, o,

s’, c’> where sS is a current main state, cC a current

context, iI an input, pP a enabling predicate which

depends on the context c, oO an output, s’S a next

main state, and c’C a next context.

Note that EFSMs can functionally describe system

components that may be blocks or modules depending

on the used formal description technique such as SDL

[4].

2.2 Specification of Embedded Systems

The basic structure of an embedded system

environment comprises an external process, sensors,

actuators, and a controller:

 External process is a process that can be of

physical, mechanical, or electrical nature.

 Sensors provide information about the current state

of the external process by means of so-called

monitoring events. They are communicated to the

controller. For the controller, they represent input

events. They are considered as stimuli for the

controller.

 Controller must react to each received event, i.e.

input event. Events originate usually from sensors.

Depending on the received events from sensors,

corresponding states of the external process will be

determined.

 Actuators receive the results determined by the

controller which are communicated to the external

process by means of so-called controlling events.

The embedded system specification consists of the

specification of its environment and its controller. We

assume that the embedded system is state-transition

based. Thus, the behavior of the above components will

be considered as a collection of p-EFSM models

interacting with each other via broadcasting events

according to a given interaction relationship.

In the simplest case, we can model the behavior of each

component as a single p-EFSM as indicated below. The

composition of EFSMs is out of the scope of this paper.

 Sensors: p-EFSMs = <Ss, Cs, Is, Ps, Os, Ts, s0s, c0s>

 Controller: p-EFSMc = <Sc, Cc, Ic, Pc, Oc, Tc, s0c, c0c>

 Actuators: p-EFSMa = <Sa, Ca, Ia, Pa, Oa, Ta, s0a, c0a>

III. Fixing Analysis and Testing Issues

3.1 Defining Analysis Issues

Properties that usually aimed by analysis and testing

when the data flow is considered are summarized as

follows:

 The non-existence of non-executable actions: The

system comprises no actions that cannot be

executable under normal conditions.

 Liveliness: Each state of the system is reachable

from the initial state.

 Deadlock-freeness: The system reaches no state

that does not allow to interact with the environment

and never leaves it.

 Livelock-freeness: The system comprises no non-

productive cycles.

 Error tolerance and resynchronization: The system

reaches a normal state within a limited time period

after an error leading to an abnormal state within a

limited time period after an error leading to an

abnormal state has been occurred.

 Safety: The system comprises no unspecified

inputs or outputs.

 Partial correctness: The system provides a special

service when it terminates.

 Termination: The system reaches each time the

final state(s), or the initial state for cyclic systems.

To allow the analysis of embedded systems precise

specifications are essential. The use of formal methods

enables the automation of most aspects of these

activities [6] [7] [8]. We are particularly interested in

the following analysis and testing issues:

 The non-executability of parts of the system

 Deadlock situations

 Inconsistencies of the system, i.e. whether the

system contains non-deterministic behaviors

 Prohibited types of communication

 Incompleteness

 Checking of erroneous behaviors

3.2 Basic Idea of the Empirical Analysis

Analytically, the statement of the presence or absence

of the above problems in specification or

implementations is generally very hard or impossible

due to the specified data flow in term of state variables

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 222

(related to state explosion problem), interaction

parameters, predicates or guard conditions specified for

transitions, data types and domain variables and

parameters etc. Furthermore, the derivation of

appropriate test cases is also an important issue for

embedded systems testing and for software testing in

general. In the context of embedded system testing, the

question of deciding whether a given part of the

specification is executable is a difficult issue. For this

reason, the most work on verification and test

development for embedded systems assumes that the

system is specified in a simple state transition model

without considering the data flow.

Taking into consideration the difficulties explained

above, we suggest to classify the variables and

parameters specified in the data flow according to the

extent of their definition domains:

 Behavior parts with only control flow, and without

any data flow can be theoretically analytically

analyzed.

 Behavior parts including exclusively variables and

parameters with a finite number of values can be

theoretically analytically analyzed:

o if they are in a reasonable amount

o otherwise empirically

 Behavior parts including at least one variable or

parameter with an infinite number of values:

o empirically

Note that the empirical approach is based on the

knowledge and experiences of the analysis and test

expert. Based on his expert knowledge, a tester is able

to focus analysis by selecting successive sub-domains

of a variable with a reasonable amount that could be

very critical for the well-functioning of the system.

After performing the analysis for all successive sub-

domains, a heuristic value about the absence of the

given analysis issue among those defined above can be

stated.

3.3 Formulation of the Analysis Issues

Below is an example about the formulation of the

problem of detecting one of the analysis issues

mentioned above based on the modified EFSM model.

Similarly, we formally define the other issues to which,

then, the above empirical analysis principle can be

applied.

Detecting of non-executable parts

The problem of detection of non-executable parts is the

problem for deciding whether a given p-EFSM

modeling a function for a given component of the

embedded system contains non-executable transitions

and detecting them if they exist.

The detection of non-executable branches allows to

deduce a specification whose all transitions are

executable. The detected specification should be more

simplified and obtained by eliminating all non-

executable transitions and their descendants.

We can find all non-executable branches in a p-EFSM

as follows. A branch ss’ in the p-EFSM is a non-

executable if the two following conditions are fulfilled:

 x1, …, xk [s(x1,…,xk)]

 (x1, …, xk [s’(x1,…,xk)])

where

 s and s’ are two states of the p-EFSM.

 s(x1,…,xk) represents the conjunction of all

predicates for the context x1, …, xk from the initial

state s0 until the state s.

Statement

The problem for deciding, whether a given branch of

the p-EFSM is non-executable, is resolvable under

certain limiting assumptions.

Statement

The problem for deciding, whether a given branch of

the p-EFSM is non-executable, is resolvable under

certain limiting assumptions.

IV. CONCLUSION

In this paper, we have proposed an analysis principle of

data flow for embedded systems. This assumes that the

specification or implementation is modeled as EFSMs

that allows to specify the data flow in addition to

control flow. We have identified the issues related to

data flow specification and explained the difficulties of

their statement analytically. As alternative, we have

proposed an empirical analysis principle that

repetitively performs analysis on sub-domains of the

variables specified in the data flow and the end

provides a heuristic statement.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 223

In a future work we plan to refine the empirical

analysis approach proposed here and to apply it on a

real-life embedded system.

V. REFERENCES

[1]. A. Sinha et al. On generating EFSM models from

use cases. In Proc. of sixth international

workshop on scenarios and state machines

(SCESM’07), pp 1–8, 2007.

[2]. H. Katagiriy et al. Hardware, implementation of

communication protocols modeled by concurrent

EFSMs with multiway synchronization. In Proc.

of the 37th conference on design automation

(DAC’00), Los Angeles, 2000.

[3]. V. S. Alagar. Specification of Software Systems.

In Springer, 2014. ISBN: 1475729219.

[4]. Specification and Description Language SDL

’92. ITU-T Recommendation Z.100, 1992.

[5]. R. Buessow, R. Geisler, and M. Klar. Specifying

safety-critical embedded systems with statecharts

and Z: A case study. In Proceedings of

Fundamental Approaches to Software

Engineering (FASE’98), Lisbon, 1998.

[6]. M. Mendler, G. Luettgen. Statecharts: From

Visual Syntax to Model-Theoretic Semantics. In

K. Bauknecht, W. Brauer, and Th. Mück

(editors), Workshop on Integrating Diagrammatic

and Formal Specification Techniques (IDFST

2001), pages 615-621, Vienna, 2001.

[7]. B. Potter, J. Sinclair, and D. Till. Introduction to

Formal Specification and Z (2nd Edition).

Prentice Hall PTR; 1996.

[8]. A. V. Aho, A. T. Dahbura, D. Lee, and M.U.

Uyar. An optimisation technique for protocol

conformance test generation based on UIO

sequences and Rural Chinese Postman Tours. In

S. Aggarwal and K. Sabnani, editors, Protocol

Specification, Testing, and Verification, New

Jersey, 1988.

[9]. S. Fujiwara, G.v. Bochmann, F. Khndek, M.

Amalou, and A. Ghedamsi. Test selection based

on finite state models. IEEE transaction on

Software Engineering 17(6): 591-603, 1991.

