
CSEIT1725224 | Received : 16 Oct 2017 | Accepted : 31 Oct 2017 | September-October-2017 [(2)5: 960-964]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

960

A Novel Code Compression for Embedded Systems Using
Reversible Logic Gates

R. Anandhi1, Dr. V. Thrimurthulu2, K. Purna Chandra Rao3
1Mtech Student, Department of ECE, Chadalawada Ramanamma Engineering College, Tirupathi, Andhra Pradesh., India

2Professor, Department of ECE, Chadalawada Ramanamma Engineering College, Tirupathi, Andhra Pradesh., India
3Assistant Professor, Department of ECE, Chadalawada Ramanamma Engineering College, Tirupathi, Andhra Pradesh., India

ABSTRACT

Embedded systems are constrained by the available memory. Code compression techniques address this issue by

reducing the code size of application programs. Dictionary-based code compression techniques are popular because

they offer both good compression ratio and fast decompression scheme. The basic purpose Of Bit Mask is to record

mismatched values and their positions to compress a greater number of instructions; it can be used exclusively or

incorporated with the reference instructions to decode the code words. In this paper, we applied a small separated

dictionary, and variable mask numbers were used with the Bit Mask algorithm to reduce the codeword length of

high frequency instructions. The proposed Method Reversible gates is used to to improve the performance of the

decompression engine without affecting the compression ratio (CR).

Keywords: Reverse logic, dictionary-based code compression, separated dictionaries, Compression Ratio.

I. INTRODUCTION

MEMORY is one of the key driving factors in

embedded-system design because a larger memory

indicates an increased chip area, more power

dissipation, and higher cost. As a result, memory

imposes constraints on the size of the application

programs. Code-compression techniques address the

problem by reducing the program size. Fig. 1 shows the

traditional code-compression and decompression flow

where the compression is done offline (prior to to

execution) and the compressed program is loaded into

the memory. Compression ratio (CR), widely accepted

as a primary metric for measuring the efficiency of

code compression, is defined as

Figure 1: Code Compression Methodology

Dictionary-based code compression (DCC) is

commonly used in embedded systems, because it can

achieve an efficient CR, possess a relatively simple

decoding hardware, and provide a higher

decompression bandwidth than the code compression

by applying lossless data compression methods. Thus,

it is suitable for architectures with high-bandwidth

instruction-fetch requirements, such as the very long

instruction word (VLIW) processors. Although several

existing code compression algorithms have exhibited

favorable compression performance, no single

compression algorithm has efficiently worked for all

kinds of benchmarks. In this paper, various steps in the

code compression process were combined into a new

algorithm to improve the compression performance

(including the CR) with a smaller hardware overhead.

Based on the BitMask code compression (BCC)

algorithm a small separated dictionary is proposed to

restrict the codeword length of high-frequency

instructions, and a novel dictionary selection algorithm

is proposed to achieve more satisfactory instruction

selection, which in turn may reduce the average CR.

Furthermore, the fully separated dictionary architecture

is proposed to improve the performance of the

dictionary-based decompression engine.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 961

II. REVERSABLE LOGICS

Reversible Gates are the circuits in which number of

outputs is equal to the number of inputs and there is a

one to one mapping between the vector of inputs and

outputs. It helps to determine the outputs from the

inputs as well as helps to uniquely recover the inputs

from the outputs. The general structure of a reversible

gate is shown in figure1

Figure 2 A n × n Reversible Gate

Constant Inputs:

This alludes to the quantity of data sources that are to

be kept up steady at either 0 or 1 keeping in mind the

end goal to incorporate the given sensible capacity.

Garbage Outputs:

Garbage Outputs indicates the number of outputs which

are not used in the synthesis of a given function. In

certain cases these become mandatory to attain

reversibility. Therefore garbage is the number of

outputs added to make an n-input k-output function ((n;

k) function) reversible.

Quantum Cost:

Quantum cost may be defined as the cost of the circuit

in terms of the cost of a primitive gate. It is calculated

by the number of primitive reversible logic gates (1*1

or 2*2) required to realize the circuit. The quantum cost

of a circuit is the minimum number of 2*2 unitary

gates to represent the circuit keeping the output

unchanged. The quantum cost of a 1*1 gate is 0 and

that of any 2*2 gate is the same, which is 1.

Basic Reversible logic gates:

Some of the important reversible logic gates are: NOT

Gate, Feynman Gate, Toffoli Gate, Fredkin Gate and

Peres gate as give below

NOT Gate:

The simplest Reversible gate is NOT gate and is a 1*1

gate. The Reversible 1*1 gate is NOT Gate with zero

Quantum Cost is as shown in the Figure 3.

Figure 3: NOT Gate

Feynman Gate:

 Fig 4 shows The Feynman gate which is a 2*2 gate

and is also called as Controlled NOT and it is widely

used for fan-out purposes. The inputs (A, B) and

outputs P=A, Q= A XOR B. It has quantum cost one.

Figure 4 Feynman Gate

Double Feynman Gate:

Figure 5 shows a 3*3 Double Feynman Gate . The

input vector is I (A, B, C) and the output vector is O (P,

Q, R). The outputs are defined by P=A, Q=A⨁B,

R=A⨁C.

Figure 5: Double Feynman Gate

Toffoli Gate:

Fig 6 shows a 3*3 Toffoli gate. The input vector is I (A,

B, C) and the output vector is O (P, Q, R). The outputs

are defined by P=A, Q=B, R=AB XOR C Quantum

cost of a Toffoli gate is 5

Figure 6: Toffoli Gate

Fredkin Gate:

Fig 7 shows a 3*3 Fredkin gate. The input vector is I

(A, B, C) and the output vector is O (P, Q, R). The

outputs are defined by P=A, Q=A′BAC and R=A′C

AB. Quantum cost of a Fredkin gate is 5

Figure 7 Fredkin Gate

Peres Gate:

Fig 8 shows a 3*3 Peres gate. The input vector is I (A,

B, C) and the output vector is O (P, Q, R). The outputs

are defined by P = A, Q = AB, R=ABC. Quantum

cost of a Peres gate is 4

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 962

Figure 8: Peres Gate

III. RELATED WORKS

 Bit Mask Code Compression Algorithm

To improve the CR there are many modified versions

of dictionary-based methods. Based on the Bit Mask

code compression (BCC) algorithm, a small separated

dictionary is proposed to restrict the codeword length

of high-frequency instructions. In the Bit Mask, The

fully separated dictionary architecture is proposed to

improve the performance of the dictionary-based

decompression engine.

Figure 9. BitMask-based method.

IV. CODE COMPRESSION ALGORITHMS

A. Separated Dictionaries

In certain cases, low code density architecture which

contains a high number of unique instructions a large

LUT is required to compress the programs. Two LUTs

are used for the Bit Mask approach. A large LUT is

used to compress single instructions, and a small LUT

is used to compress the extremely high-frequency

instructions. A large LUT has several disadvantages: it

requires a large chip area, additional power

consumption, a long LUT latency, and a long codeword

length. To overcome these disadvantages the

instructions are separated into another small dictionary

to obtain shorter codeword lengths.

Figure 10: separated dictionary architecture

B. Architecture For The CLCBCC

A separate dictionary was used to reduce the codeword

length of high-frequency instructions. Variable mask

numbers were used to eliminate the encoding

redundancy. The combination of these methods is

called as the CLCBCC.

Figure 11. Specific architecture for the CLCBCC

C. Decompression Engine

The decompression engine, the logic diagram of which

is shown in Fig. 12 consisted of a control unit, a

demultiplexer, shift buffers, LUTs, and the BitMask

unit. The control unit controls other units and assigns

tasks to other units according to the control signals.

The input queue initializes itself, collects compressed

instructions from the storage space, and shifts the

contents of the buffer after the decoding process is

completed. The output queue stores the decompressed

instructions and delivered them to the processor or

cache. The large LUT and small LUT store the original

binary instructions and synthesized using a flip-flop

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 963

logic. The small LUT stores high-frequency

instructions enabling them to be quickly decoded with

a shorter codeword length. The BitMask unit executes

the shifting of masks and XOR operations based on the

instructions from the large LUT to obtain the original

instructions. The BitMask unit also accesses the

dictionary and executes shift operations in parallel

during decompression. The proposed decompression

engine has a decompression bandwidth of 32 bits/cycle.

Figure 12. Logic diagram of decompression engine

V. DECOMPRESSION ENGINE IS USING

REVERSIBLE GATES

The reversible logic gates is used to design the

Decompression Engine is shown in figure 13 consisted

of a control unit, a demultiplexer, shift buffers, LUTs,

and the BitMask unit. The control unit controls other

units and assigns tasks to other units according to the

control signals. The input queue initializes itself,

collects compressed instructions from the storage space,

and shifts the contents of the buffer after the decoding

process is completed. The output queue stores the

decompressed instructions and delivered them to the

processor.

Figure 13: Block diagram of Decompression Engine by

using reversible logic gates

VI. RESULTS

Block diagram of Decompression engine

RTL Schematic

Technology Schematic

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 964

COMPARISION TABLE:

Method AREA

(LUTS)

POWER

(WATTS)

DELAY

(NS)

EXISTING 107 0.162 2.668

PROPOSED 42 0.143 3.668

Simulation Results:

VII. CONCLUSION

Embedded systems are constrained by the memory size.

Code compression techniques address this problem by

reducing the code size of the application programs.

Dictionary-based code compression techniques are

popular since they generate a good compression ratio

by exploiting code repetitions. Recent techniques use

bit toggle information to create matching patterns and

thereby improve the compression ratio. However, due

to lack of an efficient matching scheme, the existing

techniques can match up to three bit differences. The

proposed Reversible logic gates is used the design of a

simple and fast decompression unit that is capable of

decoding an instruction per cycle as well as performing

parallel decompression Engine.

VIII. REFERENCES

[1]. A. Wolfe and A. Chanin, "Executing compressed

programs on an embedded RISC architecture," in

Proc. 25th Annu. Int. Symp. Microarchitecture, pp.

81-91,Dec.1992.

[2]. C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,

"Improving code density using compression

techniques," in Proc. 30th Annu. ACM/IEEE Int

Symp. MICRO, pp. 194-203, Dec. 1997.

[3]. S.-W. Seong and P. Mishra, "A bitmask-based code

compression technique for embedded systems," in

Proc. IEEE/ACM ICCAD, pp. 251-254, Nov. 2006.

[4]. S.-W. Seong and P. Mishra, "An efficient code

compression technique using application-aware

bitmask and dictionary selection methods," in Proc.

DATE, pp. 1-6 2007.

[5]. M. Thuresson and P. Stenstrom, "Evaluation of

extended dictionarybased static code compression

schemes," in Proc. 2nd Conf. Comput. Frontiers, pp.

77-86, 2005.

[6]. TMS320C62x DSP CPU and Instruction Set

Reference Guide, Texas Instruments, Dallas, TX,

USA, Jul. 2006.

[7]. H. Lekatsas and W. Wolf, "SAMC: A code

compression algorithm for embedded processors,"

IEEE Trans. Computer-Aided Design Integr. Circuits

Syst., vol. 18, no. 12, pp. 1689-1701, Dec. 1999.

[8]. S. Y. Larin and T. M. Conte, "Compiler-driven cached

code compression schemes for embedded ILP

processors," in Proc. 32nd Annu. Int. Symp.

Microarchitecture, pp. 82-91, Nov. 1999.

[9]. Y. Xie, W. Wolf, and H. Lekatsas, "Code compression

for VLIW processors using variable-to-fixed coding,"

in Proc. 15th ISSS,pp. 138-143, 2002.

[10]. C. H. Lin, Y. Xie, and W. Wolf, "Code compression

for VLIWembedded systems using a self-generating

table," IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 15, no. 10, pp. 1160-1171, Oct. 2007.

