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ABSTRACT 
 

Skeleton sequences provide 3D trajectories of human skeleton joints. The spatial temporal in sequence is very 

significant for action detection. Considering that deep convolution neural network (CNN) is very influential for 

feature learning in images, in this paper, we intend to transform a skeleton sequence into an image-based 

demonstration for spatial temporal information learning with CNN. Specifically, for each channel of the 3D 

coordinates, we distinguish the sequence into a clip with several gray images, which represent multiple spatial 

structural information of the joints. Those images are fed to a deep CNN to learn high-level features. The CNN 

features of all the three clips at the same time-step are concatenated in a feature vector. Each feature vector 

represents the temporal information of the entire skeleton sequence and one particular spatial relationship of the 

joints. Then we propose a Multi-Task Learning Network (MTLN) to jointly process the feature vectors of all time-

steps in related for action detection. Investigational results clearly show the effectiveness of the proposed new 

representation and feature learning method for 3D action detection. 

Keywords: Temporal pooling of CNN, MTLN, LSTM, HMM and CRF. 

 

I. INTRODUCTION 

 
Human illustration based on 3D skeleton data encodes 

the complete person body with joints. It is strong to 

illumination changes and invariant to camera views [9], 

with the incidence of highly-accurate and reasonable 

devices, action detection based on 3D skeleton 

sequence has been attracting growing interest [32, 28, 4, 

24, 36, 16, 14]. In this paper, we focus on skeleton-

based action detection. Given a skeleton sequence, the 

temporal dynamics of several frames and the spatial 

structural information of the skeleton joints in a single 

frame give important cues for action detection [36]. 

The most existing works implicitly model the temporal 

dynamics of skeleton sequences using Hidden Markov 

Models (HMMs) [31], Conditional Random Fields 

(CRFs) [26] or Temporal Pyramids (TPs) [28]. To 

make use of the spatial structure, different features 

have been investigated, such as histogram of joint 

positions [32], pair wise relative position [29] and 3D 

rotation and transformation [28]. In recent times, 

recurrent neural networks (RNNs) with Long-Short 

Term Memory (LSTM) neurons [7, 8] have also been 

used to form the spatial formation [4, 24, and 36] or 

jointly the spatial and temporal information of skeleton 

sequences [16]. All of the mentioned works directly 

operate on the local 3D coordinates of the joints to take 

out features and learning models. While, the 

coordinates of the joints are not always accurate, this 

usually results in poor features. In addition, it is also 

hard to handle the large temporal variations and 

complex spatial structures using the native coordinates 

of the noisy skeleton joints. Considering that CNNs are 

capable of learning healthy features, in this paper, 

instead of directly operating on the local 3D 

coordinates of the joints to extract features, we convert 

each skeleton sequence to three video clips, and then 

utilize deep networks to learn features from the clips 

for action detection. 
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Mainly, given a skeleton sequence, several joints are 

selected as the reference joints, which we use to 

generate multiple set of vectors by separately 

comparing the reference joints with the others. Three 

clips corresponding to the 3D coordinate of the vectors 

are then obtained. Each clip is enclosed multiple frames 

generated from the different sets of vectors. Every 

frame of the clips explains the temporal in sequence of 

the complete skeleton sequence, and includes one 

particular spatial association among the joints. The 

whole clips collective multiple frames with the 

different spatial relationships, providing important 

information of the spatial formation of the skeleton 

joints. 

 

 Unlike the novel skeleton sequence, which just 

contains the coordinates of the discrete joints, the 

generated clips are contains of images. The advantage 

of the generated clips above the unique skeleton series 

is that deep CNN models pre-trained with large-scale 

Image Net [22] can be leveraged to extract 

representations which are invariant and are insensitive 

to noise. CNNs are known to learn image features that 

are vigorous to noise due to the convolution and 

pooling operators. The learned features are generic and 

can be transferred to novel tasks from the original tasks 

[34, 17].  

 

More specifically, each frame of the generated clips is 

fed to a pre-trained CNN model followed by a temporal 

pooling layer to extract a CNN feature. Then the three 

CNN features of the three clips at the related time-step 

(See Figure 1) are link together in a feature vector. 

Accordingly, multiple feature vectors are extracted 

from all the time-steps. Every feature vector represents 

one exacting spatial association between the joints. All 

the feature vectors of different time-steps represent the 

different spatial relationships and there exist intrinsic 

relationships among them. Therefore, this paper 

proposes to utilize the intrinsic relationships among 

different feature vectors for action recognition using a 

Multi-Task Learning Network. Multi-task learning 

aims at improving the generalization performance by 

jointly training multiple related tasks and utilizing their 

essential relationships [1]. In the proposed MTLN, the 

categorization of each feature vector is treated as a split 

task, and the MTLN together learns every one of of the 

feature vectors and outputs different predictions, every 

equivalent to one task. All the feature vectors of the 

same skeleton sequence have the same label as the 

skeleton sequence. During training, the loss value of 

each task is individually computed using its own class 

scores. Then the loss values of all tasks are summed up 

to define the final loss of the network which is then 

used to update the network parameters. During testing, 

the class scores of all tasks are averaged to form the 

final prediction of the action class. Multi-task learning 

concurrently solves multiple tasks with weight sharing, 

which can advance the presentation of individual tasks 

[1]. 

 

II. RELATED WORKS 
 

In this part, we cover the significant journalism of 

skeleton-based action finding by hand-crafted features 

and deep learning methods. 

 

Hand-crafted Features In [12], the covariance matrices 

of the trajectories of the combined positions is 

computed over hierarchical of time levels to model the 

skeleton sequences. In [29], the pair wise relative 

position of each joint with other joints is computed to 

differentiate every frame of the skeleton sequences, and 

Fourier Temporal Pyramid is used to replica the 

temporal patterns. In [33], the pair wise relative 

positions of the joints are also used to characterize pose 

features, motion features, and recompense features of 

the skeleton sequences. Principal Component Analysis 

is then applied to the normalized features to compute 

Eigen Joints as representations. In [32], histograms of 

3D joint locations are computed to set apart each frame 

of the skeleton sequences, and HMMs are used to 

model the temporal dynamics. In [28], the rotations and 

translations among various body parts are used as 

representations, and a skeleton sequence is modeled as 

a curve in the Lie group. The temporal dynamics are 

modeled with FTP.  

 

Deep Learning Methods In [4], the skeleton joints are 

separated into five sets equivalent to five body parts. 

They are fed into five BLSTMs for feature fusion and 

classification. In [36], the skeleton joints are fed to a 

deep LSTM at each time slot to learn the inherent co-

occurrence features of skeleton joints. In [24], the long-

term context representations of the body parts are 

learned with a part aware LSTM. In [16], both the 

spatial and temporal information of skeleton sequences 

are well read with a spatial temporal LSTM. A Trust 

Gate is also proposed to get rid of noisy joints. This 
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method achieves the up to date performance on the 

NTU RGB+D dataset [24]. 

 

III. PROPOSED SYSTEM 
 

An overall architecture of the proposed method is 

shown in Figure 1. The proposed method starts by 

generating clips of skeleton sequences. A skeleton 

sequence with an arbitrary number of frames is 

transformed into three clips corresponding to the 

different channels of the cylindrical coordinates, as 

shown in Figure 1(b).  

 

 
 

Figure 1. Architecture of the proposed method. Given a 

skeleton sequence (a), three clips (b) corresponding to 

the three channels of the cylindrical coordinates are 

generated. A deep pre-trained CNN model (c) and a 

temporal mean pooling (TMP) layer (d) are used to 

extract a compact representation from each frame of the 

clips (see Figure 2 for details). The output CNN 

representations of the three clips at the same time-step 

are link together, resulting four feature vectors (e). 

Every feature vector represents the temporal 

information of the skeleton sequence and a testing 

spatial association of the skeleton joints. The proposed 

MTLN (f) which includes a fully connected (FC) layer, 

a rectified linear unit (ReLU), another FC layer and a 

Soft max layer jointly processes the four feature vectors 

in parallel and outputs four sets of class scores (g), each 

corresponding to one task of classification using one 

feature vector. During preparation, the loss values of 

the four tasks are added up to define the loss value of 

the network used to update the network parameters. For 

testing, the class scores of the four tasks are averaged 

to generate the final Prediction of the action class. 

 

The generated clips are then fed to a pre-trained CNN 

model and the proposed MTLN for robust feature 

learning and action recognition. 

 

 

 

A. Clip Generation 

 

 Given a skeleton sequence, just the trajectory of the 

3D Cartesian coordinates of the skeleton joints is 

provided. As mentioned in Section 1, the features 

extracted from the native 3D format (i.e., coordinates 

of joints) are sensitive to joint noise and temporal 

variations. This paper aims to transform the original 

skeleton sequence to a collection of clips consisting of 

images, which can be used to learn robust features 

using deep networks.  

 

 To transform a skeleton sequence to a video-based 

demonstration, intuitively, one could represent the 

substance of each frame of the skeleton sequence as an 

image, and then fuse all frames in a video. Though, this 

technique will outcome in a long video of which the 

temporal dynamics will be complicated to learn. In 

addition, each frame of the generated video will also be 

too sparse as the number of the skeleton joints is small.  

 

  

 In this paper, we propose to represent the temporal 

dynamics of the skeleton sequence in a frame image, 

and then use multiple frames to incorporate different 

spatial relationships between the joints. An benefit of 

this method is that for any skeleton sequence with an 

random number of frames, the generated clips contain 

the same number of frames. The robust and invariant 

temporal information of the original skeleton sequence 

could be captured with the powerful CNN 

representations erudite from each frame image. 

  

 Specifically, the time series of each joint of a skeleton 

sequence can be represented as three 1D feature 

columns corresponding to the three channels of the 3D 

Cartesian coordinates (x; y; z). To transform these time 

series of all joints to an image-based format, a simple 

way is to concatenate the 1D feature columns of all 

joints along the row dimension in a sequential order. A 

2D array could thus be generated for each channel of 

the 3D coordinates. The 2D arrays could further be 

transformed to images by scaling their values. The 

drawback of this method is that it neglects the spatial 

association between the joints, which is a critical cue 

for action recognition as it describes a particular 

posture of a human.  

  

 To tackle this issue, instead of directly using the 

coordinates of each joint, this paper selects several 
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joints as reference joints. For each reference joint, a set 

of vectors can be derived by computing the difference 

of coordinates between the reference joint and the other 

joints. Each set of vectors reflects meticulous spatial 

relationships between the joints. In this paper, four 

joints are selected as the reference joints. The four 

reference joints are selected from four body parts, 

namely, the left shoulder, the right shoulder, the left hip 

and the right hip. The four joints are selected due to the 

fact that they are stable in most actions. They can thus 

reflect the motions of the other joints. Although the 

base of the spine is also stable, it is close to the left hip 

and the right hip. It is therefore discarded to avoid 

information redundancy. The four joints are 

respectively compared with other joints to generate 

four sets of vectors. The four sets of vectors combine 

different spatial relationships between the joints, 

providing useful spatial structural information of the 

skeleton joints.  

 

More specifically, given a frame of a skeleton sequence, 

let the 3D coordinates of the skeleton joints be: 

 

   {              }                   

 

 Where m is the number of the skeleton joints, and 

qi=[xi, yi, zi] represents the 3D coordinate of the i
th
 joint. 

  

 Let the reference joint be   
  [  

    
    

 ]         

, and define 

 

    {     
                 }              

 

Where Vk is the set of the vectors of the k
th
 reference 

joint in one frame. 

  

The 3D Cartesian coordinates of each vector in Vk are 

further transformed to cylindrical coordinates. The 

cylindrical coordinates have been used to extract view-

invariant motion features for action recognition [30]. 

Compared to the Cartesian coordinates, the cylindrical 

coordinates are more useful to analyze the motions as 

each human body utilizes pivotal joint movements to 

perform an action. Given a vector (x, y, z), the qualities 

are changed to (θ, ϕ, z) where θ = atan2(y/x), ϕ 

= √     . For the k
th
 reference joint, all of the 

vectors in the set Vk are arranged in a chain. The three 

channels of the cylindrical coordinates of all vectors are 

separately concatenated into three rows, each 

corresponding to one channel of the cylindrical 

coordinates of all vectors. 

 

 Given a skeleton sequence with t frames, there are t 

sets of vectors for the k
th 

reference joint. The three rows 

of the t sets are separately concatenated along the row 

dimension, resulting three arrays Dθ
k
 ,D

k
ϕ ,D

k
z with R

t*m
, 

m m is the number of vectors in each frame of the 

skeleton sequence. Each array can be transformed into 

a 2D gray image by scaling the values of the array 

between 0 and 255 using linear transformation. Thus 

for each channel of the cylindrical coordinates, the four 

reference joints generate four images, which are then 

combined in a clip. Consequently, three clips 

corresponding to the three channels       are obtained. 

  

Every frame of the generated clips describes the 

temporal dynamics of the entire frames of the skeleton 

sequence in one channel of the cylindrical coordinates. 

Particularly, the rows of the frame image communicate 

to the frames of the skeleton sequence, and the columns 

communicate to the vectors generated from the joints. 

  

B. Clip Learning 

 

The generated clips are different from the normal 

videos, i.e., there is no temporal order of the frames. 

For each clip, each frame includes one particular spatial 

relationship between the skeleton joints in one channel 

of the cylindrical coordinates. Different frames 

describe different spatial relationships and there exists 

intrinsic relationships among them. Therefore, instead 

of computing optical flow and learning the temporal 

structure of each clip to provide a video-level 

prediction, this paper proposes to extract a compact 

representation from each frame using a deep CNN. The 

three CNN features of the three clips at the alike time-

step are link together in a feature vector, which 

represents the temporal information of the skeleton 

sequence and one particular spatial association between 

the skeleton joints in three channels of the cylindrical 

coordinates. Then the feature vectors of all time-steps 

are jointly processed in parallel using multi-task 

learning, thus to utilize their intrinsic relationships for 

action recognition. 

 

C. Temporal Pooling of CNN Feature Maps 

 

To learn the features of the generated clips, a deep 

CNN is firstly working to extract a compact 
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representation of each frame. Since each frame 

describes the temporal dynamics of the skeleton 

sequence, the spatial invariant CNN feature of every 

frame might therefore correspond to the strong 

temporal information of the skeleton sequence.  

 

Given the generated clips, the CNN feature of every 

frame is extracted with the pre-trained VGG19 [25] 

model. The pre-trained CNN model is leveraged as a 

feature extractor due to the reality that the CNN 

features extracted by the models pre-trained with Image 

Net [22] are very powerful and have been efficiently 

applied in a number of cross-domain applications [3, 6, 

21, 10]. In addition, current skeleton datasets are also 

too small or too noisy to correctly train a deep network. 

However the frames of the generated clips are not 

normal images, they might still be fed to the CNN 

model pre-trained with Image Net [22] for feature 

extraction. The similarity between a natural image and 

the generated frames is that both of them are matrices 

with some patterns. The CNN models trained on the 

large image dataset can be used as a feature extractor to 

extract representations of the patterns in matrices. The 

learned representations are generic and can be 

transferred to novel tasks from the original 

tasks [34, 17]. 

 

The pre-trained VGG19 [25] model contains 5 sets of 

convolution layers conv1, conv2... conv5. Each set 

includes a stack of 2 or 4 convolution layers with the 

same kernel size. Totally there are 16 convolution 

layers and three fully connected layers in the network.  

 

 
Figure 2. Temporal mean pooling of the CNN feature 

maps. (a) An input frame of the generated clips, for 

which the rows correspond to the different frames of 

the skeleton sequence and the columns correspond to 

the different vectors generated from the joints. (b) 

 

Output feature maps of the conv5_1 layer. The size is 

14 x14x 512. Each activation (shown in red) of the 

feature map is a feature correspond to the local region 

of the original image (shown with a red square). (c) 

Temporal features of all joints of the skeleton sequence, 

which are obtained by applying mean pooling to each 

feature map in the row (temporal) dimension. (d) 

Output feature, which is achieved by concatenating all 

the feature maps in (c). 

 

Although deep neural networks are able to learn 

powerful and generic features which can be used in 

other novel domains, the features extracted from the 

different layers have different transferability. 

Particularly, the features in earlier layers are more 

generic, while in later layers; the features are more 

task-specific, which largely rely on the original classes 

and dataset. The features of the later layers are thus less 

suitable than those of the earlier layers to transfer to 

other domains [34, 17]. Therefore, this paper adopts a 

compact representation that is consequent from the 

activations of the convolution layer to exploit the 

temporal information of a skeleton sequence. The 

feature maps in the convolution layer have been 

successfully applied for action recognition and image 

retrieval [19, 20]. Specifically, the last 3 convolution 

layers and fully connected layers of the network are 

discarded. Each frame image of the three clips is scaled 

to 224x224, and is then duplicated three times to 

formulate a color image, so that it can be fed to the 

network. The output of the convolution layer conv5_1 

is used as the representation of the input frame, which 

is a 3D tensor with size 14x14x512, i.e., 512 feature 

maps with size 14x14. 

 

 As mentioned in Section A, the rows of the generated 

frame correspond to different frames of a skeleton 

sequence. The dynamics of the row features of the 

generated image therefore represents the temporal 

evolution of the skeleton sequence. Meanwhile, the 

activations of each feature map in the conv5_1 layer 

are the local features corresponding to the local regions 

in the original input image [19]. The temporal 

information of the sequence can thus be extracted from 

the row features of the feature maps. More specifically, 

the feature maps are applied temporal mean pooling 

with kernel size 14 _ 1, i.e., the pooling is applied over 

the temporal, or row dimension, thus to generate a 

dense fusion representation from all temporal stages of 

the skeleton sequence. 

  

 Let the activation at the i
th
 push and the j

th
 segment of 

the k
th
 highlight guide be xi,j

k
. After temporal mean 

pooling, the output of the k
th
 feature map is given by: 
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    [  
     

      
 ]                        (3) 

  
  

 

 
∑            

  
  

   
 

 

The outputs of all feature maps (512) are concatenated 

to form a 7168D (14 x512 = 7168) feature vector, 

which represents the temporal dynamics of the skeleton 

sequence in one channel of the cylindrical coordinates. 

 

D. Multi-Task Learning Network  

 

As shown in Figure 1(e), the output 7168D features of 

the three clips at the same time-step are concatenated, 

generating four feature vectors. Each feature vector 

represents the temporal dynamics of the skeleton 

sequence and includes one particular spatial link 

between the joints in three channels of the cylindrical 

coordinates. The four feature vectors have intrinsic 

relations between each other. An Multi task learning 

network is then proposed to jointly process the four 

feature vectors to utilize their intrinsic relationships for 

action recognition. The classification of each feature 

vector is treated as a separate task with the same 

classification label of the skeleton sequence.  

 

The architecture of the network is shown in Figure 1(f). 

It includes two fully connected (FC) layers and a 

Softmax layer. Between the two FC layers there is a 

rectified linear unit (ReLU) [18] to introduce an 

additional non-linearity. Given the four features as 

inputs, the MTLN generates four frame-level 

predictions, each corresponding to one task. 

 

During training, the class scores of each task are used 

to compute a loss value. Then the loss values of all 

tasks are summed up to generate the final loss of the 

network used to update the network parameters. During 

testing, the class scores of all tasks are averaged to 

form the final prediction of the action class. The loss 

value of the k
th 

task (k = 1,….,4) is given by Equation 4. 

 

          ∑  

 

   

      (
      

∑       

 
   

) 

 (4) 

  

 = ∑   
 
    (   ∑       

 
   )       

  

 Where zk is the vector fed to the Softmax layer 

generated from the k
th

 input feature, m is the amount of 

action classes and yi is the ground-truth label for class i. 

The final loss value of the network is computed as the 

sum of the four individual losses, as shown below in 

Equation 5: 

 

         ∑   
 
                         (5) 

 

 Where Z= [Z1…., Z4]. 

 

IV.  Conclusion 

 

Finally In this paper, we have proposed to transform a 

skeleton sequence to three video clips for robust feature 

learning and action recognition. We proposed to use a 

pre-trained CNN model followed by a temporal pooling 

layer to extract a compact representation of each frame. 

The CNN features of the three clips at the same time-

step are concatenated in a single feature vector, which 

describes the temporal information of the total skeleton 

sequence and one particular spatial connection between 

the joints. We then propose an MTLN to jointly learn 

the feature vectors at all the time steps in similar, which 

utilizes their intrinsic relationships and improves the 

performance for action recognition. We have tested the 

proposed method on three datasets, including NTU 

RGB+D dataset, SBU kindest interaction dataset and 

CMU dataset. Experimental results have shown the 

effectiveness of the proposed new representation and 

feature learning method. 
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