
CSEIT172551 | Received : 10 Sep 2017 | Accepted : 17 Sep 2017 | September-October-2017 [(2)4: 243-247]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

243

Design and Implementation of Logic Gates using Artificial Neural
Networks on FPGA

Bharath Rao Madela, V. Yaswanth Siva Sai
Department of Electronics and Communication Engineering, SVNIT, Surat, Gujarat, India

ABSTRACT

In this paper, a hardware implementation of artificial neural networks and implementation of logic gates using

artificial neural networks on Field Programmable Gate Arrays (FPGA) is presented. A digital system architecture

for feed forward multilayer neural network is realized. The parallel structure of a neural network makes it

potentially fast for the computation of certain tasks that makes a neural network well suited for implementation in

VLSI technology. Then logic gates are implemented using Feed Forward Neural Network. FPGA has been used to

reduce the unit neuron hardware by designing the activation function inside the neuron without the need of lookup

tables. The whole design is realized using Verilog HDL and is implemented on FPGA.

Keywords: Artificial Neural Network, FPGA, Verilog, Activation Function, Feed Forward Propagation.

I. INTRODUCTION

Neural networks have been widely used in many fields,

either for development or for application. They can be

used to solve a wide variety of problems that are

difficult to be resolved by other methods. They are

mostly employed in Artificial Intelligence. [1]

Although neural networks are mostly implemented in

software, hardware versions are gaining importance.

Software versions have the advantage of being easy to

implement, but with poor performance. Hardware

versions are generally more difficult and time

consuming to implement, but with better performance.

[2]

In technological view, humans are trying to emulate the

behaviour of Biological Neuron. ANNs are biologically

inspired and require parallel computations in their

nature. So Microprocessors and DSPs are not suitable

for parallel designs. Designing parallel modules can be

available by ASICs and VLSIs. In addition the design

results in an ANN is only suited for one target

application. FPGA’s not only offer parallelism but also

flexible designs, savings in cost and design cycle. [3]

The architecture is designed using Verilog Hardware

description language.

II. STRUCTURE OF ANN

An artificial neural network is an interconnected group

of nodes, which perform function collectively, and in

parallel, akin to the vast network of neurons in a human

being. It consists of a number of input vectors,

followed by multipliers, which are often called as

weights followed by a summer and an activation

function. The input signals are summed and sent

through a threshold function. If the result of the

summation operation exceeds the threshold value, the

neuron fires i.e. the output of the threshold function

will be positive else, it will give a negative value. [4]

The artificial neuron model, which is shown in Figure 1,

is widely used in artificial neural networks with some

variations.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 244

 Figure 1. Structural diagram of a Neuron

The artificial neuron given in this figure has N inputs,

denoted as A1, A2… An. Each line connecting these

inputs to the neuron is assigned a weight, denoted as

W1, W2….Wn respectively. The activation, x,

determines whether the neuron is to be fired or not. It is

given by the formula:

 x = ∑

 (1)

A negative value for a weight indicates an inhibitory

connection while a positive value indicates excitatory

connection. The output, y of the neuron as a function of

x is given by

 y = f(x) (2)

The output function f(x) is known as a threshold

function or activation function.

III. NEURON ACTIVATION FUNCTION

One of the important part of the neuron is its Activation

function of a node defines the output of that node given

in an input or set of inputs. The non-linearity of the

Activation function makes it possible to approximate

any function. The types of Activation function used in

this work are symmetrical hard limit activation function,

Saturating Linear Activation Function and Sigmoid

Activation Function. [5]

A. Symmetrical Hard limit Activation Function

It is referred as ‘Hardlims’. It is used to classify inputs

into two distinct categories. Hard limiting means

clipping, it is a limiting action in which there is a over

permitted dynamic range, negligible variation in the

expected characteristics of the output signal and steady

state signal at the maximum permitted level. Hard limit

activation function is given below.

 {

 Figure 2. Symmetric Hard limit Activation Function

B. Saturated Linear Activation Function

It is also known as satlins. This transfer function

calculates a layers output from its net input. The output

is as shown below.

 a {

 Figure 3. Saturated Linear Activation Function

C. Sigmoid Activation Function

In the hardware concepts of Neural Networks, it is not

easy to implement on FPGA, because it consists of

infinite exponential series. Formula to calculate

sigmoid function is given as

 (())

 Figure 4. Sigmoid Activation Function

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 245

IV. FEED FORWARD SYSTEM OF ANN

The Structure of the neuron can be realized in many

ways, mainly considering the degree of the parallel

computation needed. The proposed Structural diagram

for hardware implementation of neuron is shown in

Figure 5. The structure contains two shift registers, one

contains the weights while the other register holds the

input. This approach is appropriate for general purpose

neuron i.e. programmable neuron. It employs only one

input to load all weights thus saving on chip pins. The

weights are shifted sequentially until the register is

loaded. The weights are then multiplied by the input

and accumulated to produce the desired output [6].

Verilog HDL has been used for realizing the structure

of neuron.

Figure 5. Structural Diagram of Neuron

The Feed Forward networks are generally arranged in

distinct layers that contain only forward path that is

shown in Figure6. In this type of network each layer

receives inputs from the previous layer and outputting

to the next layer which indicates there is no feedback. It

means that signals from one layer are not transmitted

back to the previous layer. [7]

 Figure 6. Feed Forward neural network

V. DESIGN OF LOGIC GATES USING ANN

Different logic gates have been implemented using the

Feed Forward Neural Networks. Single bit inputs are

taken and 4 bit weights are taken for the design. In

neural networks, if output is greater than 0, it is

considered as +1 and if the output is less than 0, it is

considered as -1. The neuron model is like a universal

gate which can be modified into other gates just by

changing the appropriate weights.

The AND gate is implemented using the Hard limit

activation function. In case of Hard Limit activation

function a high output (1) results only if obtained

output from the neural network is greater than zero.

The low output (-1) results only if obtained output from

the neural network is less than zero (0).

Figure 7. Neuron model for AND Gate with hardlims

The OR gate is a logic gate which performs logical

disjunction. A High output (1) results if one or both the

inputs to the gate are high. If neither of the inputs are

high, a Low output (0) results. In neural network, if

output is greater than 0 it is considered as +1, if output

is less than 0 which is very small then it is considered

as -1. This can be decided by the Saturating Linear

Activation function.

 Figure 8. Neuron Model for OR Gate using Satlins

The XOR gate gives a High output (1) when the

number of true inputs are odd i.e. When the 2 given

inputs are complimentary to each other, a logic High (1)

occurs. The XOR gate is realized by using sigmoid

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 246

function as the transfer function. The realization of

XOR gate is shown in the Figure 9.

Figure 9. Neuron Model for XOR Gate using Sigmoid

Activation Function

VI. RESULTS AND DISCUSSIONS

The logic gates using Artificial Neural Network models

have been written in Verilog HDL and is implemented

in Spartan-3e FPGA. The results from the Xilinx ISE

tool are furnished below

Figure 10. Simulation for AND Gate with Neuron model

Figure 11. Simulation for OR Gate with Neuron model

Figure 12. Simulation for XOR Gate with Neuron model

Figure 13. ANN Hardware implementation on Spartan-3

FPGA

VII. CONCLUSION

The logic gates using artificial neural networks with

feed forward propagation have been successfully

implemented. The hardware implementation offers a

high parallelism and efficiency compared to software

versions. As the field is of artificial intelligence is ever

increasing, and thus requiring high degree of parallel

computation which can be provided by hardware

versions. Machine learning concept can be adhered to

ANN by training the gates to learn by themselves by

using Back Propagation methods.

 VIII. REFERENCES

[1]. B. Widrow, D. E. Rumelhart, and M.A. Lehr,

"Neural Networks: applications in industry,

business and science," Communications of the

ACM, vol. 37, no. 3, pp. 93-105, 1994.

[2]. Rolf F. Molz, Paulo M. Engel, Fernando G.

Moraes, "Codesign to Fully Parallel Neural

Network for a Classification Problem".

University Montpellier II, France, 2000.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 247

[3]. A. Muthuramalingam, S. Himavathi, and E.

Srinivasan, "Neural network implementation

using fpga: Issues and Application," The

International Journal of Information Technology,

vol. 4, no.2, pp.86-92, 2008.

[4]. Hardik H. Makwana, Dharmesh J. Shah, Priyesh

P. Gandhi."FPGA Implementation of Artificial

Neural Network" International Journal of

Emerging Technology and Advanced

Engineering Volume 3, Issue 1, January 2013.

[5]. Esraa Zeki Mhammed and Haitham Kareem

Ali,"Hardware implementation of Artificial

Neural Network Using Field Programmable Gate

Array" International Journal of Computer Theory

and Engineering, Vol. 5, October 2013.

[6]. Emmanuel Adetiba, F.A. Ibikunle, S.A.

Daramola and A.T. Oliajide, "Implementation of

Efficient Perceptro ANN Neurons on Field

Programmable Gate Array Chip" International

Journal of Engineering & Technology IJET-

IJENS Vol 14 No:01.

[7]. A. Savran and S.Unsal, "Hardware

Implementation of a feed forward neural network

using FPGA’s" Ege, Department of Electrical

and Electronics Engineering, 2003.

