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ABSTRACT 
 

It is cost-efficient for a tenant with a limited budget to establish a heterogeneous virtual MapReduce clusters by 

renting various virtual private servers (VPSs) from a VPS provider. To provide an appropriate scheduling scheme 

for this type of computing environment, and MapReduce still performs poorly on heterogeneous clusters, we 

propose in this paper a hybrid job-driven scheduling scheme (JoSS for short) from a tenant perspective. JoSS 

provide not only job level scheduling, but also Map-task level scheduling and Reduce-task level scheduling; The 

deployment of MapReduce in data canters and clouds present several challenges, improve data locality for both 

map-level task and reduce-level task, avoid job starvation and improve job execution performance. Two variations 

of JoSS-Task and JoSS-Job are further introduced to separately achieve a better map-data locality and a faster task 

assignment. We conduct extensive experiments to evaluate and compare the two variations (JoSS-T and JoSS-J) 

with current scheduling algorithms supported by Hadoop. The result shows that the two variations crush the 

opposite tested algorithms in terms of map and reduce data locality , and network overhead while not acquisition 

significant overhead. Additionally, the two variations area unit severally appropriate for various MapReduce-

workload eventualities and supply the most effective job performance among all tested algorithms.  

Keywords : MapReduce, Hadoop, Map-task Scheduling, Reduce-task Scheduling, Heterogeneous virtual 

MapReduce clusters 

 

 

I. INTRODUCTION 

 
MAPREDUCE [1] is a really popular paradigm in 

distributed programming model proposed by Google to 

process vast amount of data in parallel manner. Due to 

programming-model simplicity, data distribution, 

scalability, and fault tolerance, MapReduce and its 

open-source implementation is known as Hadoop [2], 

have been employed by many organizations , including 

Facebook, Amazon, IBM, Twitter, and Yahoo!, to 

process their business data. MapReduce has also been 

used to solve diverse applications, such as text 

tokenization, indexing, search, data mining [3], health 

care [4], machine learning [5], statistical modelling [6], 

bio informatics [7], social network [8], and astronomy 

[9]. 

 

MapReduce permits a computer user to define a 

MapReduce job as a map function and reduce function 

and provides a runtime system to divide the job into 

multiple map and reduce tasks and perform these tasks 

on a MapReduce clusters in parallel. Typically, a 

MapReduce cluster consists of a collection of 

commodity machines/nodes located on several racks 

and many racks and interconnected with one another in 

a local area network [LAN] [10].During this paper, we 

call this a conventional MapReduce clusters. As a 

result of the very fact that building and maintaining a 

standard MapReduce cluster is costly for a 

person/company with a restricted budget, an alternative 

way to establish a heterogeneous virtual MapReduce 

cluster by either renting a MapReduce framework [11] 

from a MapReduce services provider. (E.g. Amazon) or 

dealing multiple virtual private servers (VPSs) from a 

VPS provider [12]. Each VPS could be a virtual 
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machine with its own OS and disk space. Due to some 

reasons, such as availability issues of a data center or 

resource shortage on a popular datacentres, a tenant 

may rent VPSs from different datacentres operated by a 

same VPS provider to determine his/her heterogeneous 

virtual MapReduce cluster [13]. During this paper, we 

have a tendency to target a heterogeneous virtual 

MapReduce cluster of this type.  

  

For a person person/company that a build conventional 

MapReduce clusters map-data locality (when the data 

is local on the same node as the mapper working on the 

data) in the cluster is categorized into data locality, 

node locality and different rack [15]. Since the 

person/company is aware of physical interconnection 

and placement among all nodes and racks. However, 

for a tenant who builds a heterogeneous virtual 

MapReduce cluster, the tenant only knows each VPS’s 

IP address and each VPS’s data center location (E.g. 

place name). Other information such as physical 

machine and rack that each VPS belongs to is not 

released by the provider. Hence from the tenants point 

the map-data locality in his/her heterogeneous virtual 

MapReduce cluster can only be categorized into the 

following three levels: 

 

VPS- locality, it means that a map task and input data 

are located in the same heterogeneous VPS.    

Cen-locality, it means that a map task and its input data 

are within the data centre, but not at the same 

heterogeneous VPS. 

 

Off-cenlocality, it means that map task and its input 

data are located at different datacentres.      

 

Reduce-data locality is rarely designed in a 

conventional MapReduce[14] cluster since reducing the 

distance between a reduce task and its input data 

coming from all the related map tasks in a LAN. But 

this is achievable in a heterogeneous virtual 

MapReduce cluster compromising multiple datacentres.     

 

MapReduce in data centres or cloud platforms offers a 

more cost effective model to implement big data 

analytics. Hardware heterogeneity occurs because 

servers are gradually upgraded and replaced in data 

centres. Interference from multiple tenants sharing the 

same cloud platform can also cause heterogeneous 

performance even on homogeneous hardware. The 

difference in processing capabilities on MapReduce 

nodes breaks the assumption of homogenous clusters 

[16] in map design and can result in load imbalance. 

Which may cause poor performance and low cluster 

utilization. To improve MapReduce performance in 

heterogeneous environment, Work has been done to 

make task scheduling and load balancing heterogeneity 

aware. Despite these optimizations, most MapReduce 

implementation such as Hadoop still performs poorly in 

heterogeneous environment. 

 

The MapReduce distributing model runs on a large data 

cluster consists of homogenous nodes also assumes the 

homogeneous workload when making a scheduling 

decision. MapReduce take care of the details of 

partitioning the input data, scheduling the program’s 

execution. The MapReduce performance depends on 

the previous properties which appear obviously in the 

homogeneous environment. The homogenous 

environment assumptions have been broken as: 

 

It is not always possible or even desirable to have a big 

cluster consists of only one type of machine. 

It is unsatisfied virtualized data center. 

 

It does not take the difference of workload 

characteristics between jobs into account when making 

a schedule decision from VPS provider. 

 

Thus, the need of employing the MapReduce model on 

a heterogeneous environment becomes necessary for 

hybrid jobs. The heterogeneity environment affects the 

performance of the   MapReduce algorithms. Many 

researchers [17], [18], [19], [20] and [21] has discussed 

how the heterogeneity affects the MapReduce 

performance and developed algorithms to improve 

performance in heterogeneous environments. 

 

We propose an appropriate scheduling scheme for a 

tenant to achieve a high map-and-reduce data locality 

and improve job performance in his/her heterogeneous 

virtual MapReduce cluster, so we propose a hybrid job-

driven scheduling scheme (JoSS) JoSS classifies 

MapReduce jobs into either large or small jobs based 

on each job’s input size to the average datacenter scale 

of the heterogeneous virtual MapReduce cluster, and 

further classifies small MapReduce clusters jobs into 

either map-heavy or reduce-heavy based on the ratio 

between each job’s reduce-input size and the job’s 

map-input size. Then JoSS uses a particular scheduling 

policy to schedule each class of jobs such that the 
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corresponding network traffic generated during job 

execution can be reduced, and the corresponding job 

performance can be improved. In addition, we propose 

two variations of JoSS, named JoSS-T and JoSS-J, to 

guarantee a fast task assignment and to further increase 

the VPS-locality, respectively. for heterogeneous 

clusters by providing scheduling in three levels: job, 

map task, and reduce task. In this paper JoSS-T refers 

for the Tasks (both map and reduce) and JoSS-J refers 

for the job. We implement JoSS-T and JoSS-J in 

Hadoop-2.7 and conduct extensive experiments to 

compare them with several known scheduling 

algorithms supported by Hadoop, including the FIFO 

algorithm [22], Fair scheduling algorithm [23], and 

Capacity scheduling algorithm [24]. The experimental 

results demonstrate that both JoSS-T and JoSS-J 

outperform the other tested algorithms in terms of map 

and reduce-data locality, and network overhead without 

causing too much overhead, regardless of the particular 

job type and scale. 

 

The contribution of this paper is as follows: 

Introduces an overview of the MapReduce model, a 

brief introduction to Hadoop, and the MapReduce 

approaches in heterogeneous environment. 

JoSS to appropriately schedule MapReduce jobs in a 

virtual MapReduce cluster by addressing both map-

data locality and reduce-data locality from the 

perspective of a tenant. 

By classifying jobs into map-heavy and reduce-heavy 

jobs and designing the corresponding policies to 

schedule each class of jobs and scheduling them in a 

round-robin fashion, JoSS avoids job starvation and 

improves job performance. 

A formal proof is also provided to determine the best 

threshold for different MapReduce jobs. 

Two variations of JoSS (i.e., JoSS-T and JoSS-J) are 

introduced to respectively achieve two conflicting goals: 

speeding up task assignment and further increasing the 

VPS-locality. 

MapReduce benchmarks to create two different 

MapReduce workloads for evaluating and comparing 

JoSS-T and JoSS-J with three known scheduling 

algorithms supported by Hadoop. Moreover, a set of 

metrics showing data-locality, network overhead, job 

performance, and load balance. 

The rest of this paper is organized as follows. Sections2. 

Survey MapReduce. Sections3. Related work, 

respectively. Section 4 presents the JoSS and the two 

variations. Section 5 derives the best threshold to 

classify map-heavy jobs and reduce-heavy jobs. In 

Section 6, Extensive experiments are conducted and 

discussed. Section 7, concludes this paper. 

 

II. MAPREDUCE 

 

The MapReduce [1] contains two important tasks, 

namely Map and Reduce. The map task is done by 

means of Mapper Class. The reduce task is done by 

means of Reducer Class. The Map task takes a set of 

data and converts it into another set of data, where 

individual elements are broken down into tuples (key-

value pairs).The Reduce task takes the output from the 

Map as an input and combines those data tuples (key-

value pairs) into a smaller set of tuples. The reduce task 

is always performed after the map job. 

 

 

 

Input Phase, Record Reader that translates each record 

in an input file and sends the parsed data to the mapper 

in the form of key, value pairs. Map, Map is a user-

defined function, which takes a series of key-value 

pairs and processes. Intermediate Keys, The key-value 

pairs generated by the mapper are known as 

intermediate keys. Combiner, A combiner is a type of 

local Reducer that groups similar data from the map 

phase. Shuffle and Sort, the Reducer task starts with the 

Shuffle and Sort step.  

 

Reducer, The Reducer takes the grouped key-value 

paired data as input and runs a Reducer function on 

each one of them. Output Phase, In the output phase, 

we have an output formatter that translates the final 

key-value pairs from the Reducer function and writes 

them onto a file using a record writer. 
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III. RELATED WORK 

 

Analysis of structured data has seen tremendous 

success in the past. However, analysis of large scale 

unstructured data in the form of video format remains a 

challenging area. YouTube, a Google company, has 

over a billion users and generates billions of views. 

Since YouTube data is getting created in a very huge 

amount and with an equally great speed, there is a huge 

demand to store, process and carefully study this large 

amount of data to make it usable The main objective of 

this project is to demonstrate by using Hadoop 

concepts, how data generated from YouTube can be 

mined and utilized to make targeted, real time and 

informed decisions. The project utilizes the YouTube 

Data API [25] (Application Programming Interface) 

that allows the applications/websites to incorporate 

functions that are used by YouTube application to fetch 

and view information. The Google Developers Console 

is used to generate a unique access key which is further 

required to fetch YouTube public channel data. Once 

the API key is generated, based console application is 

designed to use the YouTube API for fetching video(s) 

information based on a search criteria. The text file 

output generated from the console application is then 

loaded from HDFS. 

 

The First In First Out(FIFO) scheduling algorithm is a 

default scheduling algorithm provided by Hadoop ,  

Reduces response time due to speculative execution. 

Works well in the case of only short jobs. It follows a 

strict job submission order to schedule every map task 

of a job and mean while attempt to schedule a map task 

to an idle node that's near the corresponding map-input 

block. Uses fixed threshold for selecting tasks to 

reexecute. Can’t  identify which tasks to be reexecuted 

on fast nodes correctly. The FIFO algorithm only 

focuses on map-task scheduling, rather than reduce-

task scheduling. Hence, when FIFO is adopted in a 

heterogeneous virtual MapReduce cluster, its low 

reduce-data locality might cause a long job turnaround 

time. FIFO is used to achieve node locality and rack 

locality in conventional MapReduce clusters, rather 

than achieving the VPS-locality and Cen-locality in a 

heterogeneous virtual MapReduce cluster. 

Consequently, the map-data locality of FIFO might be 

low in a heterogeneous virtual MapReduce cluster. 

 

In addition to the FIFO scheduling algorithm, Hadoop 

also provides the fair scheduling algorithm and the 

capacity scheduling algorithm. The first fair scheduling 

is proposed by Facebook to fairly assign computation 

resources to each job in a cluster such that all jobs 

shares equal resources overtime. Job weight is not 

considered for each node.  The later, introduced 

capacity scheduling algorithm by Yahoo!, also allows 

multiple users to share a MapReduce cluster. It 

supports multiple queues and allocates a fraction of a 

cluster’s computation resources to each queue, i.e., all 

jobs submitted to a queue can only access to the 

resource allocated to the queue. Similar to these two 

algorithms, JoSS allows multiple jobs to 

simultaneously share the computation resource of a 

virtual MapReduce cluster. User needs to know system 

information and make queue set and queue select group 

for the job.  But different from the two algorithms (fair 

scheduling and capacity scheduling), JoSS further 

provides reduce-task scheduling to improve job 

performance. 

 

We propose JOSS to appropriately schedule Map 

Reduce jobs in a virtual Map Reduce cluster by 

addressing both map-data locality and reduce-data 

locality from the perspective of a tenant.  By 

classifying jobs into map-heavy and reduce-heavy jobs 

and designing the corresponding policies to schedule 

each class of job, JOSS increases data locality and 

improves job performance. 

 

IV. THE PROPOSED SCHEME  

 

In this section, we describe how JoSS schedules 

MapReduce jobs in a heterogeneous virtual 

MapReduce cluster consisting of n datacenters, n>1. 

Let cenc be the cth datacenter supporting the 

composition of the heterogeneous virtual MapReduce 

cluster, c=1,2,...,n. Let NVPS be the number of VPSs 

provided by cenc, NVPSc > 1. Let VPSc be the mth 

VPS provided by cenc,=1,2,...;NVPS;c. Assume that 

each VPS has only one map slot and one reduce slot, 

i.e., at most one map task and one reduce task can be 

performed by a VPS simultaneously. For each 

datacenter in cenc, JoSS maintains two permanent 

queues, denoted by MQc;0 and RQc;0, to respectively 

put the map tasks and the reduce tasks that are 

scheduled datacentres to be executed by VPSs at cenc. 

  

Let J be a MapReduce jobs submitted by a user, and D 

is the input data processed by J. Based on the 
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predefined block size S, D will be divided into m 

blocks B1,B2,...,Bm where m  Let Bi is the i-th block 

of D, i ¼ 1, 2,...,m . According to the total number of 

the blocks of the jobs, J is divided into the same 

number of map tasks.  

 

Let M i be the ith map task that processes B, i=1,2,...,m. 

Let r be the number of reduce tasks of J, and let Rj be 

the jth reduce task of J where j=1, 2,...,r and r>1. In the 

following, a VPS performing a map task is called a 

mapper, whereas a VPS running a reduce task is called 

a reducer. 

 

4.1 Job Classification 

 

Before we are introducing the algorithm of JoSS, we 

first describe how the JoSS classifies different types of 

jobs and schedules each class of jobs. Let Rreduce and 

Mmap be the total reduce-input size and the total map-

input size of J, respectively. Based on the ratio of 

Rreduce over Mmap, J can be classified into either a 

reduce heavy job or a map-heavy job of the all jobs. If J 

satisfies, implying that the network overhead is 

dominated by the J’s reduce-input data set for the you 

tube, then J is classified as a reduce-heavy job (RH job 

for short). Otherwise, J is classified as a map-heavy job 

(MH job for short). Note that the td is a threshold to 

determine the classification, td >0: The best value of 

the td will be derived as the   

 

 Rreduce /Mmap> td    

 

In fact, Mmap;the size of Bi, and Rreduce; where FPi is 

the filtering percentage of Bi showing the ratio of Mi’s 

map-output size of the all  jobs over Mi’s map-input 

size of the all job, FPi>0. 

 

In order to reduce and the above classification, we 

chose six MapReduce benchmarks: Word-Count, Grep, 

Inverted-Index, Sequence-Count, Self-Join, and Term 

Vector from PUMA to conduct the experiments on the 

youtube dataset. The purpose is to study the minimum 

playing the youtube dataset of  the  among the filtering-

percentage values of all map tasks of a MapReduce job. 

In the first experiment, we randomly selected you tube 

dataset from the youtube dataset is  generated  by the 

user views based on the admin can be uploaded in the 

web; from the you tube data set to be the input of each 

benchmark.  

 

4.2. Scheduling Policies 

 

Policy A : 

 

This policy is only designed for the small RH job. If 𝐽 

is a small RH job, it would be better that each reducer 

of 𝐽 is close to the all mappers of 𝐽 since the reducer 

can more quickly retrieve its input data from all the 

mappers from the input data. 

 

But this also implies that all the  mappers of 𝐽 should be 

close to each other. The , policy A works as follows. It 

first chooses 𝑐𝑒𝑛w, which is a datacenter having the 

atleast amount of unprocessed tasks among all the 𝑘 

datacenters in a VPS, Then it schedules all tasks of 𝐽 to 

𝑐𝑒𝑛w by putting 𝐽’s map tasks and 𝐽’s reduce tasks at 

the end of the all jobs 𝑀𝑄w,o and 𝑅𝑄w,o, respectively. 

 

Policy B : 

This policy is only designed for the small MH job. If 𝐽 

is a small MH job, it would be better that each mapper  

of 𝐽 is close to its input block of the datacenter, and 

each reducer of 𝐽 is close to most mappers of 𝐽 jobs. 

The, policy B works as follows: It schedules 𝐽’s all map 

tasks based on the number of unique input blocks of 𝐽 

held by each datacenter of the VPS. If a datacenter 

holds more unique blocks of 𝐽, more map level tasks of 

𝐽 will be scheduled to the VPSs at this datacenter. 

 

Policy C : 

 

This policy is only designed for the large jobs. If J is in 

the large job to a virtual MapReduce cluster of the VPS, 

using one datacenter of the cluster to run all map level 

tasks of J might need several rounds to finish these map 

level tasks, implying that the job turnaround time will 

be prolong. To prevent this from happening, it is the 

better not to use a single datacenter to run all these map 

level tasks.  

 

The , as long as J is the large job, JoSS utilizes policy C, 

which in fact uses the same strategy of policy B to 

schedule all (Map and Reduce) tasks of J. However, in 

policy C, all the map level tasks scheduled to cenc will 

not be put into MQc;0 since MQc;0 is reserved for the 

only small jobs. Instead, these map level tasks will be 

put into a new map-task queue created for cenc. 

Similarly, the reduce level tasks of the large job 

scheduled to cenc will be put into a new reduce-task 

queue created for cenc, rather than RQc;0. The purpose 
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is to separate large jobs and small jobs into different 

queues and allow JoSS to avoid job starvation and also 

improve the execution performance; And VPS of the 

both Map data locality and Reduced data locality. 

 

4.3 JOSS And Its Two Variations 

 

JoSS consists of three types of  components: input-data 

classifier, task scheduler, and task assigner. The input-

data classifier is designed to classify the input data 

uploaded by a user into one of the two types: web 

document and non-web document.  The  web document 

refers to a file consisting of a lot of tags and text 

enclosed in angle brackets. By simply inspecting the 

first several sentences of a document and without tags, 

the inputdata classifer can easily know if it is a web 

document or not. After the classification, the input-data 

classifier records the type of the input data in  the JoSS . 

Whenever receiving a MapReduce jobs from a user, the 

task scheduler determines the type of the job and then 

schedules the job based on either policy A, B, or C. 

The task assigner then determines how to assign a task 

to a VPS whenever the VPS has an idle slot.   

  

The algorithm of the task scheduler. Upon receiving 𝐽, 

the task scheduler retrieves 𝐽’s input data type 

classified by the input-data classifier and checks 

whether JoSS has executed 𝐽 on such input-data type or 

not by calculating the corresponding hash value and 

cen1. 

comparing the value with 𝐻, where 𝐻 is a set of hash 

values previously generated and recorded by JoSS.  If 

the hash value is not in 𝐻 (see line 4), it means that 

JoSS does not know 𝐽’s average filtering-percentage 

value and 𝐽’s job classification. To obtain the above 

information, the task scheduler simply appends 𝐽’s all 

map tasks and 𝐽’s all reduce tasks to two queues, 

denoted by 𝑀𝑄!"!# and 𝑅𝑄!"!#, respectively. This 

allows the task assigner to use the Hadoop FIFO 

algorithm [1] to assign these tasks to idle VPSs. Once 𝐽 

is completed, JoSS records the corresponding hash 

value and averge filtering-percentage value.  However, 

if the hash value is in 𝐻 (see line 7), it means that JoSS 

knows the average filtering-percentage value of 𝐽. Then 

the task scheduler schedules 𝐽 as follows: If 𝐽 is a small 

RH job, the abovementioned policy A is used to 

schedule the tasks of 𝐽 (please see lines 9 to 12).  

 

 

Task Scheduler of JoSS 

Input: J and input data 

Output: task scheduling result 

Procedure: 

1: Calculate the hash value for J's executable code  

 and J's data of input type; 

2: Let H be a set of the hash values 

  previously generated by JoSS; 

3: if the hash values are not in H 

4: { 

5:  add all map level tasks of the J 

   to the end of MQfifo; 

6:   add all reduce level tasks  

  of the J to the end of RQfifo;} 

7: else 

8: { 

9:  if J is the small RH  

  jobs{ // Using the policy A. 

10:  Let cenn be the data center having 

   the least unprocessed tasks 

cen1,cen2,....cenm; 

11:  add all map level tasks of the J  

  to the end of MQw,0; 

12:   add all reduce level tasks  

  of the J to the end of RQw,0;} 

13: else 

14: { 

15:  Let Lc is the set of all unique input 

   blocks of held by cenc 

16:  where c=1,2,....,n; 

17:  let  a=n; //n is the number 

   of map level tasks of J// 

18:  while a>0{// not all map level tasks of 

J are scheduled// 

19:  Let Ld be the first largest among of all 

jobs L1, L2, ,,,Ln; 

20:  Let ILdI is the size of Ld; 

21:  Let cend is the related datacenter; 
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22:  if J is the small MH jobs{ // 

Using the policy B. 

23:  add ILdI all map level tasks of the J to 

the end of MQd,0;} 

24:  else { // J is the large job, so using the 

policy C// 

25:  let v be the total number of map level 

task queues in cend; 

26:  Generate a new map level task queue 

MQd,v+1;} 

27:  add ILdI all map level tasks of the J to 

the end of MQd,v+1;} 

28:  for c=1ton 

29:  delete a block from Lc if the block is ib 

Ld;} 

30:  a=a-ILdI;} 

31:  Let cene be the data center holding the 

   largest number of unique input data 

blocks of J; 

32:    if J is the small MH jobs{

 // Using the policy B. 

33:   add ILdI all map level tasks of 

the J to the end of RQc,0;} 

34:  else { // J is the large job, so using the 

policy C// 

35:   let v be the total number of 

map level task queues in cend; 

36:   Generate a new map level task 

queue RQc,v+1;} 

37:   add ILdI all map level tasks of 

the J to the end of RQc,v+1;}}} 

   

Figure 1: The algorithm of the task scheduler  

 

Otherwise, it means that 𝐽 is either a small MH job or a 

large job, and the task scheduler uses lines 14 to 37 to 

schedule 𝐽. Recall that policies B and C are used to 

schedule a small MH job and a large job, respectively. 

If 𝐽 is a small MH job, the task scheduler directly 

inserts 𝐽’s map tasks to the permanent map-task queue 

of the determined datacenter (see line 22), and also 

inserts 𝐽’s reduce tasks to the permanent reduce-task 

queue of the determined datacenter (see line 33). In 

other words, no additional queue will be created for any 

small jobs. The purpose is not to increase the queue 

management overhead of JoSS. In another case, if 𝐽 is a 

large job, the task scheduler additionally generates a 

new map-task queue and a new reduce-task queue to 

respectively put 𝐽’s map tasks and 𝐽’s reduce tasks (see 

lines 24 to 26 and lines 35 to 37). This will allow the 

task assigner to properly assign small jobs and large 

jobs to VPSs. 

 

Task- driven & Task-assigner(TTA) 

Input: an idle slot for the all input data VPSc,l  

Output: a task assigned to the result as VPSc,l  

Procedure:  

1: Let Imap and Ired be the two indexes with the 

same initial value is 0; 

2: while VPSc,l has an ideal slot 

3: { 

4:   Let Nmap be the total number 

of map level tasks queues in cenc; 

5:   Let Nred be the total number 

of reduce level tasks queues in cenc; 

6:  if the slot is a map{//the idle slot is a 

map slot;// 

7:   if MQfifo it is not empty{ 

8:   Use FIFO to assign the map 

level task from MQfifo to VPSc,l 

9:   Delete  the task from MQfifo;} 

10:   else{ 

11   Imap=Imap mod(Nmap+1); 

12:   To assign the first map level 

task from MQc,Imap to VPSc,l; 

13:   Delete  the task from 

MQc,Imap; 

14:   Imap++;}} 



Volume 2 | Issue 5 | September-October-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ]  337 

15:   else{ // the idle slot a reduce 

slot;// 

16:    if RQfifo it is not 

empty{ 

17:   Use FIFO to assign the reduce 

level task from RQfifo to VPSc,l 

18:   Delete  the task from RQfifo;} 

19:   else{ 

20:   Ired=Ired mod(Nred+1); 

21:   To assign the first re level task 

from MQc,Ired to VPSc,l; 

22:   Delete  the task from MQc,Ired; 

23:   Ired++;}}} 

 

Figure 2. The algorithm of task-driven & task assigner 

(TTA) 

 

Recall that two variations of JoSS (i.e., JoSS-T and 

JoSSJ) are proposed in this study. The former combines 

the abovementioned task scheduler and a Task-driven 

Task Assigner (TTA) to provide a fast task assignment. 

The latter combines the task scheduler and a Job-driven 

Task Assigner (JTA) to further improve the VPS-

locality. Fig. 5 illustrates how TTA works. Whenever 

𝑉𝑃𝑆!,ℓ𝓁 has an idle map slot, TTA preferentially 

assigns a map task from 𝑀𝑄!"!# to 𝑉𝑃𝑆!,ℓ𝓁 based on 

the Hadoop FIFO algorithm (see lines 7 to 8). The goal 

is to preferentially execute all newly submitted jobs 

one by one and obtain their filtering-percentage values 

to determine their job classifications. However, if 

𝑀𝑄!"!# is empty, TTA assigns one of the first map 

tasks from all the other map-task queues of 𝑐𝑒𝑛! in a 

round-robin fashion (see lines 10 to 13) such that tasks 

can be assigned quickly and job starvation can be 

avoided.  

 

Job- driven & Task-assigner(JTA) 

Input: an idle slot for the all input data VPSc,l  

Output: a task assigned to the result as VPSc,l  

Procedure:  

1: Let Imap and Ired be the two indexes with the 

same initial value is 0; 

2: while VPSc,l has an ideal slot 

3: { 

4:   Let Nmap be the total number 

of map level tasks queues in cenc; 

5:   Let Nred be the total number 

of reduce level tasks queues in cenc; 

6:  if the slot is a map{//the idle slot is a 

map slot;// 

7:   if MQfifo it is not empty{ 

8:   Use FIFO to assign the map 

level task from MQfifo to VPSc,l 

9:   Delete  the task from MQfifo;} 

10:   else{ 

11   Imap=Imap mod(Nmap+1); 

12:   To assign the first map level 

task from MQc,Imap to VPSc,l; 

13:   Delete  the task from 

MQc,Imap; 

14:   Imap++;}} 

15:   else{ // the idle slot a reduce 

slot;// 

16:    if RQfifo it is not 

empty{ 

17:   Use FIFO to assign the reduce 

level task from RQfifo to VPSc,l 

18:   Delete  the task from RQfifo;} 

19:   else{ 

20:   Ired=Ired mod(Nred+1); 

21:   To assign the first re level task 

from MQc,Ired to VPSc,l; 

22:   Delete  the task from MQc,Ired; 

23:   Ired++;}}} 

 

Figure 3. The algorithm of task-driven & task assigner 

(TTA) 
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Similarly, whenever 𝑉𝑃𝑆!,ℓ𝓁 has an idle reduce slot, 

TTA preferentially assigns a reduce task from 𝑅𝑄!"!# 

to 𝑉𝑃𝑆!,ℓ𝓁 (see lines 16 to 17). Only when 𝑅𝑄!"!# is 

empty, TTA assigns one of the first reduce tasks from 

other reduce-task queues of 𝑐𝑒𝑛! to 𝑉𝑃𝑆!,ℓ𝓁 (see lines 

19 to 22). The above algorithm shows the algorithm of 

JTA, which in fact is very similar to that of TTA.  

The only difference is that JTA always uses the 

Hadoop FIFO algorithm to assign a map task from each 

map-task queue (please compare line 11 in two 

variations) so as to further improve the VPS-locality. 

 

V. SELECTING THE BEST THRESHOLD 

 

5.1 The Small Workload  

 

The following metrics are used to evaluate the 

performance of the five algorithms under the small 

workload. 

1. Map-data locality, which can be divided into VPS 

locality rate, Cen-locality rate, and off-cen, Note that 

the values of the above three rates range from 0 to 1. A 

value of one is desirable for both the VPS-locality rate 

and the Cen-locality rate, but a value of zero is 

desirable for the off-Cen rate. 

 2. Reduce-data locality rate, which is defined as the 

percentage of input data that a reducer can obtain from 

its local datacenter. The value ranges from 0 to 1. A 

value of one is desirable. 3. Inter-datacenter network 

traffic (INT for short), which is the total inter-

datacenter network traffic generated during the 

execution of the workload. A small value of INT is 

desirable. 

 4. Job turnaround time (JTT for short), which starts 

when a job is submitted to the cluster and finishes when 

the job is completed. A short JTT is desirable. 

 5. VPS load, which shows the average number of map 

tasks executed by each VPS and the corresponding 

standard deviation. With this metric, we can know the 

load balance among VPSs. A small standard deviation 

is desirable. 

 
Figure 4. The map-data locality results of the five 

tested algorithms under the small workload 

  

Even though JoSS-T and JoSS-J had similar 

off-Cen result, the latter provided a higher VPS-locality 

rate since it employs the JTA to further increase the 

VPS locality.  

This property also makes the VPS-locality rate 

of JoSS-J higher than those of the other algorithms 

when the executed jobs are small MH jobs. The reduce-

data locality results of all algorithms. Since JoSS-T and 

JoSS-J employ the same reduce-task scheduling 

approach, they have a very similar reduce-data locality 

rate in every benchmark. In addition, it is clear that 

JoSS-T and JoSS-J provided a higher reduce data 

locality rate than the other three algorithms, especially 

when RH jobs were executed. The reason is the same, 

i.e., JoSS-T and JoSS-J always use policy A (which 

favors reduce-data locality) to schedule small RH jobs. 

 

5.2 The Mixed Workload  

 

We evaluated how the five algorithms perform when 

they execute the mixed workload. Similar to the 

metrics used earlier, the map-data locality, reduce-data 

locality, INT, and VPS load were also used to evaluate 

the five algorithms. However, JTT was not considered 

in this experiment since the input sizes processed by 

the jobs in the mixed workload were different, which 

makes this metric meaningless. Hence, we further used 

the following metrics to better measure these 

algorithms:  

 

Workload turnaround time (WTT for short), which is 

the total time required by the cluster to complete the 

entire mixed workload. 

 

Cumulative job completion rate during the execution of 

the mixed workload. 
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The map-data locality results of all algorithms under 

the mixed workload. Among all algorithms, JoSS-T 

caused the lowest VPS-locality rate, regardless of job 

type. The reason is obvious, i.e., JoSS-T uses TTA to 

quickly assign a task to an idle VPS, rather than 

increasing the VPS locality. On the other hand, by 

comparing, we can see that the VPS-locality rates of 

the other four algorithms on the mixed workload 

increased. This is because each VPS held more input 

blocks of large jobs and therefore improved the VPS-

locality rate. This property also causes that JoSS-J was 

not always better than those of the other three 

algorithms in terms of VPS-locality. Nevertheless, for 

all tested MH jobs (i.e., WC, SC, II, and Grep jobs), 

JoSS-T and JoSS-J had similar off-Cen rates, which 

were still much lower than those of the other three 

algorithms. 

 
Figure 5. The map-data locality results of the five 

tested algorithms or the mixed workload 

 

Since JoSS-T and JoSS-J had good data-locality 

performances, they dramatically reduced the inter-

datacenter network traffic for retrieving map-input data 

and reduce-input data during the execution of the 

mixed workload.  

 

5.3 Scheduling Overhead 

 

 We evaluate the overhead caused by each tested 

algorithm. The CPU idle rate and memory load of the 

Hadoop master server when the five algorithms 

separately executed the mixed workload. It is clear that 

both JoSS-T and JoSS-J did not significantly increase 

the CPU and memory load of the master server 

compared with the other algorithms. In addition, we 

further evaluated the extra storage space consumed by 

JoSS-T and JoSS-J to store all necessary information 

about every newly executed job, including the 

corresponding hash value and average filtering-

percentage value.  

  

In our experiments, each such a record is about 20 

bytes. Hence, the total storage consumption is 

proportional to the number of the newly executed jobs. 

Based on the above analyses, it is clear that JoSS-T and 

JoSS-J do not incur significant computation overhead 

memory overhead and storage overhead to the Hadoop 

master server. 

 

VI.  PERFORMANCE EVALUATION AND 

COMPARISON 
 

We evaluate and compare JoSS-T and JoSS-J with 

three scheduling algorithms provided by Hadoop, 

including the FIFO algorithm (FIFO for short), the fair 

scheduling algorithm (Fair for short), and the capacity 

algorithm (Capa for short). We established a virtual 

MapReduce cluster by renting 31 VPSs from Linode 

[12], which is a privately owned VPS provider based in 

New Jersey. One VPS acts as the Hadoop master server 

and is located at a datacenter in Dallas. The remaining 

30 VPSs act as slaves. Among them, 15 VPSs are 

located at a datacenter in Dallas and the other 15 VPSs 

are located at a datacenter in Atlanta. Each VPS runs 

Ubuntu 10.04 with two CPU cores, 2 GB RAM, and 48 

GB SSD storage space. Each VPS has a map slot and a 

reduce slot. We use Hadoop MRv1, which is widely 

adopted in production settings [28], as the 

implementation of MapReduce, and modify the source 

code of Hadoop-0.20.2 to realize JoSS-T and JoSS-J. 

To study how different MapReduce jobs with different 

filtering-percentage values influence the performances 

of the five tested algorithms, we chose the following 
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five MapReduce benchmarks to conduct our 

experiments. The first four jobs are from the 

MapReduce benchmark suite called PUMA [29], and 

the corresponding input data are web documents 

chosen from [30]. The last one job is created by 

ourselves, and its input data is a set of you tube TXT 

files. 

 

 

 

Word-Count (WC for short), which counts the 

occurrence of each word in data files. 

1) Sequence-Count (SC for short), which generates a 

count of all unique sets of three consecutive words 

in data files. 

2)   Inverted-Index (II for short), which takes a list of 

data files as input and generates word-to-file 

indexing.  

3)  Grep, which searches for a pattern in data files.  

4)  Permu, which generates the permutation for three 

consecutive DNA sequences in DNA data files. 

Consequently, not all tested MapReduce 

benchmarks will be classified as the same job type 

by JoSS-T and JoSS-J. Some of them will be 

classified as MH jobs, and the others will be 

classified as RH jobs.  

 

We used the above five benchmarks to create a small 

workload and a mixed workload, and used the two 

workloads to evaluate the performances of the five 

algorithms. 

 

VII. CONCLUSIONS 

 

In this paper, we have introduced JoSS for scheduling 

MapReduce jobs in a virtual MapReduce cluster 

consisting of a set of VPSs rented from a VPS provider. 

Different from current MapReduce scheduling 

algorithms, JoSS takes both the map data locality and 

reduce-data locality of a virtual MapReduce cluster into 

consideration. JoSS classifies jobs into three job types, 

i.e., small map-heavy job, small reduce-heavy job, and 

large job, and introduced appropriate policies to 

schedule each type of job. In addition, the two 

variations of JoSS (i.e., JoSS-T and JoSS-J) are further 

introduced to respectively achieve a fast task 

assignment an improve the VPS-locality.  

 

The extensive experimental results demonstrate that 

both JoSS-T and JoSS-J provide a better map-data 

locality, achieve a higher reduce-data locality, and 

cause much less inter-datacenter network traffic as 

compared with current scheduling algorithms employed 

by Hadoop. The experimental results also show that 

when the jobs of a MapReduce workload are all small 

to the underlying virtual MapReduce cluster, 

employing JoSS-T is more suitable than the other 

algorithms since JoSS-T provides the shortest job 

turnaround time. On the other hand, when the jobs of a 

MapReduce workload are not all small to the virtual 

MapReduce cluster, adopting JoSS-J is more 

appropriate because it leads to the shortest workload 

turnaround time. In addition, the two variations of JoSS 

have a comparable load balance and do not impose a 

significant overhead on the Hadoop master server 

compared with the other algorithms. 
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