
CSEIT172566 | Received : 10 Sep 2017 | Accepted : 20 Sep 2017 | September-October-2017 [(2) 5: 330-341]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

330

Hybrid Job-Driven Scheduling for Heterogeneous MapReduce

Clusters
J. Sivarani

1
, T. Subramanyam

2

1
Department of Computer Science, Sri Padmavathi University, Tirupati, India

2
Asst. Professor, Department of Computer Science Sri Padmavathi University, Tirupati, India

ABSTRACT

It is cost-efficient for a tenant with a limited budget to establish a heterogeneous virtual MapReduce clusters by

renting various virtual private servers (VPSs) from a VPS provider. To provide an appropriate scheduling scheme

for this type of computing environment, and MapReduce still performs poorly on heterogeneous clusters, we

propose in this paper a hybrid job-driven scheduling scheme (JoSS for short) from a tenant perspective. JoSS

provide not only job level scheduling, but also Map-task level scheduling and Reduce-task level scheduling; The

deployment of MapReduce in data canters and clouds present several challenges, improve data locality for both

map-level task and reduce-level task, avoid job starvation and improve job execution performance. Two variations

of JoSS-Task and JoSS-Job are further introduced to separately achieve a better map-data locality and a faster task

assignment. We conduct extensive experiments to evaluate and compare the two variations (JoSS-T and JoSS-J)

with current scheduling algorithms supported by Hadoop. The result shows that the two variations crush the

opposite tested algorithms in terms of map and reduce data locality , and network overhead while not acquisition

significant overhead. Additionally, the two variations area unit severally appropriate for various MapReduce-

workload eventualities and supply the most effective job performance among all tested algorithms.

Keywords : MapReduce, Hadoop, Map-task Scheduling, Reduce-task Scheduling, Heterogeneous virtual

MapReduce clusters

I. INTRODUCTION

MAPREDUCE [1] is a really popular paradigm in

distributed programming model proposed by Google to

process vast amount of data in parallel manner. Due to

programming-model simplicity, data distribution,

scalability, and fault tolerance, MapReduce and its

open-source implementation is known as Hadoop [2],

have been employed by many organizations , including

Facebook, Amazon, IBM, Twitter, and Yahoo!, to

process their business data. MapReduce has also been

used to solve diverse applications, such as text

tokenization, indexing, search, data mining [3], health

care [4], machine learning [5], statistical modelling [6],

bio informatics [7], social network [8], and astronomy

[9].

MapReduce permits a computer user to define a

MapReduce job as a map function and reduce function

and provides a runtime system to divide the job into

multiple map and reduce tasks and perform these tasks

on a MapReduce clusters in parallel. Typically, a

MapReduce cluster consists of a collection of

commodity machines/nodes located on several racks

and many racks and interconnected with one another in

a local area network [LAN] [10].During this paper, we

call this a conventional MapReduce clusters. As a

result of the very fact that building and maintaining a

standard MapReduce cluster is costly for a

person/company with a restricted budget, an alternative

way to establish a heterogeneous virtual MapReduce

cluster by either renting a MapReduce framework [11]

from a MapReduce services provider. (E.g. Amazon) or

dealing multiple virtual private servers (VPSs) from a

VPS provider [12]. Each VPS could be a virtual

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 331

machine with its own OS and disk space. Due to some

reasons, such as availability issues of a data center or

resource shortage on a popular datacentres, a tenant

may rent VPSs from different datacentres operated by a

same VPS provider to determine his/her heterogeneous

virtual MapReduce cluster [13]. During this paper, we

have a tendency to target a heterogeneous virtual

MapReduce cluster of this type.

For a person person/company that a build conventional

MapReduce clusters map-data locality (when the data

is local on the same node as the mapper working on the

data) in the cluster is categorized into data locality,

node locality and different rack [15]. Since the

person/company is aware of physical interconnection

and placement among all nodes and racks. However,

for a tenant who builds a heterogeneous virtual

MapReduce cluster, the tenant only knows each VPS’s

IP address and each VPS’s data center location (E.g.

place name). Other information such as physical

machine and rack that each VPS belongs to is not

released by the provider. Hence from the tenants point

the map-data locality in his/her heterogeneous virtual

MapReduce cluster can only be categorized into the

following three levels:

VPS- locality, it means that a map task and input data

are located in the same heterogeneous VPS.

Cen-locality, it means that a map task and its input data

are within the data centre, but not at the same

heterogeneous VPS.

Off-cenlocality, it means that map task and its input

data are located at different datacentres.

Reduce-data locality is rarely designed in a

conventional MapReduce[14] cluster since reducing the

distance between a reduce task and its input data

coming from all the related map tasks in a LAN. But

this is achievable in a heterogeneous virtual

MapReduce cluster compromising multiple datacentres.

MapReduce in data centres or cloud platforms offers a

more cost effective model to implement big data

analytics. Hardware heterogeneity occurs because

servers are gradually upgraded and replaced in data

centres. Interference from multiple tenants sharing the

same cloud platform can also cause heterogeneous

performance even on homogeneous hardware. The

difference in processing capabilities on MapReduce

nodes breaks the assumption of homogenous clusters

[16] in map design and can result in load imbalance.

Which may cause poor performance and low cluster

utilization. To improve MapReduce performance in

heterogeneous environment, Work has been done to

make task scheduling and load balancing heterogeneity

aware. Despite these optimizations, most MapReduce

implementation such as Hadoop still performs poorly in

heterogeneous environment.

The MapReduce distributing model runs on a large data

cluster consists of homogenous nodes also assumes the

homogeneous workload when making a scheduling

decision. MapReduce take care of the details of

partitioning the input data, scheduling the program’s

execution. The MapReduce performance depends on

the previous properties which appear obviously in the

homogeneous environment. The homogenous

environment assumptions have been broken as:

It is not always possible or even desirable to have a big

cluster consists of only one type of machine.

It is unsatisfied virtualized data center.

It does not take the difference of workload

characteristics between jobs into account when making

a schedule decision from VPS provider.

Thus, the need of employing the MapReduce model on

a heterogeneous environment becomes necessary for

hybrid jobs. The heterogeneity environment affects the

performance of the MapReduce algorithms. Many

researchers [17], [18], [19], [20] and [21] has discussed

how the heterogeneity affects the MapReduce

performance and developed algorithms to improve

performance in heterogeneous environments.

We propose an appropriate scheduling scheme for a

tenant to achieve a high map-and-reduce data locality

and improve job performance in his/her heterogeneous

virtual MapReduce cluster, so we propose a hybrid job-

driven scheduling scheme (JoSS) JoSS classifies

MapReduce jobs into either large or small jobs based

on each job’s input size to the average datacenter scale

of the heterogeneous virtual MapReduce cluster, and

further classifies small MapReduce clusters jobs into

either map-heavy or reduce-heavy based on the ratio

between each job’s reduce-input size and the job’s

map-input size. Then JoSS uses a particular scheduling

policy to schedule each class of jobs such that the

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 332

corresponding network traffic generated during job

execution can be reduced, and the corresponding job

performance can be improved. In addition, we propose

two variations of JoSS, named JoSS-T and JoSS-J, to

guarantee a fast task assignment and to further increase

the VPS-locality, respectively. for heterogeneous

clusters by providing scheduling in three levels: job,

map task, and reduce task. In this paper JoSS-T refers

for the Tasks (both map and reduce) and JoSS-J refers

for the job. We implement JoSS-T and JoSS-J in

Hadoop-2.7 and conduct extensive experiments to

compare them with several known scheduling

algorithms supported by Hadoop, including the FIFO

algorithm [22], Fair scheduling algorithm [23], and

Capacity scheduling algorithm [24]. The experimental

results demonstrate that both JoSS-T and JoSS-J

outperform the other tested algorithms in terms of map

and reduce-data locality, and network overhead without

causing too much overhead, regardless of the particular

job type and scale.

The contribution of this paper is as follows:

Introduces an overview of the MapReduce model, a

brief introduction to Hadoop, and the MapReduce

approaches in heterogeneous environment.

JoSS to appropriately schedule MapReduce jobs in a

virtual MapReduce cluster by addressing both map-

data locality and reduce-data locality from the

perspective of a tenant.

By classifying jobs into map-heavy and reduce-heavy

jobs and designing the corresponding policies to

schedule each class of jobs and scheduling them in a

round-robin fashion, JoSS avoids job starvation and

improves job performance.

A formal proof is also provided to determine the best

threshold for different MapReduce jobs.

Two variations of JoSS (i.e., JoSS-T and JoSS-J) are

introduced to respectively achieve two conflicting goals:

speeding up task assignment and further increasing the

VPS-locality.

MapReduce benchmarks to create two different

MapReduce workloads for evaluating and comparing

JoSS-T and JoSS-J with three known scheduling

algorithms supported by Hadoop. Moreover, a set of

metrics showing data-locality, network overhead, job

performance, and load balance.

The rest of this paper is organized as follows. Sections2.

Survey MapReduce. Sections3. Related work,

respectively. Section 4 presents the JoSS and the two

variations. Section 5 derives the best threshold to

classify map-heavy jobs and reduce-heavy jobs. In

Section 6, Extensive experiments are conducted and

discussed. Section 7, concludes this paper.

II. MAPREDUCE

The MapReduce [1] contains two important tasks,

namely Map and Reduce. The map task is done by

means of Mapper Class. The reduce task is done by

means of Reducer Class. The Map task takes a set of

data and converts it into another set of data, where

individual elements are broken down into tuples (key-

value pairs).The Reduce task takes the output from the

Map as an input and combines those data tuples (key-

value pairs) into a smaller set of tuples. The reduce task

is always performed after the map job.

Input Phase, Record Reader that translates each record

in an input file and sends the parsed data to the mapper

in the form of key, value pairs. Map, Map is a user-

defined function, which takes a series of key-value

pairs and processes. Intermediate Keys, The key-value

pairs generated by the mapper are known as

intermediate keys. Combiner, A combiner is a type of

local Reducer that groups similar data from the map

phase. Shuffle and Sort, the Reducer task starts with the

Shuffle and Sort step.

Reducer, The Reducer takes the grouped key-value

paired data as input and runs a Reducer function on

each one of them. Output Phase, In the output phase,

we have an output formatter that translates the final

key-value pairs from the Reducer function and writes

them onto a file using a record writer.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 333

III. RELATED WORK

Analysis of structured data has seen tremendous

success in the past. However, analysis of large scale

unstructured data in the form of video format remains a

challenging area. YouTube, a Google company, has

over a billion users and generates billions of views.

Since YouTube data is getting created in a very huge

amount and with an equally great speed, there is a huge

demand to store, process and carefully study this large

amount of data to make it usable The main objective of

this project is to demonstrate by using Hadoop

concepts, how data generated from YouTube can be

mined and utilized to make targeted, real time and

informed decisions. The project utilizes the YouTube

Data API [25] (Application Programming Interface)

that allows the applications/websites to incorporate

functions that are used by YouTube application to fetch

and view information. The Google Developers Console

is used to generate a unique access key which is further

required to fetch YouTube public channel data. Once

the API key is generated, based console application is

designed to use the YouTube API for fetching video(s)

information based on a search criteria. The text file

output generated from the console application is then

loaded from HDFS.

The First In First Out(FIFO) scheduling algorithm is a

default scheduling algorithm provided by Hadoop ,

Reduces response time due to speculative execution.

Works well in the case of only short jobs. It follows a

strict job submission order to schedule every map task

of a job and mean while attempt to schedule a map task

to an idle node that's near the corresponding map-input

block. Uses fixed threshold for selecting tasks to

reexecute. Can’t identify which tasks to be reexecuted

on fast nodes correctly. The FIFO algorithm only

focuses on map-task scheduling, rather than reduce-

task scheduling. Hence, when FIFO is adopted in a

heterogeneous virtual MapReduce cluster, its low

reduce-data locality might cause a long job turnaround

time. FIFO is used to achieve node locality and rack

locality in conventional MapReduce clusters, rather

than achieving the VPS-locality and Cen-locality in a

heterogeneous virtual MapReduce cluster.

Consequently, the map-data locality of FIFO might be

low in a heterogeneous virtual MapReduce cluster.

In addition to the FIFO scheduling algorithm, Hadoop

also provides the fair scheduling algorithm and the

capacity scheduling algorithm. The first fair scheduling

is proposed by Facebook to fairly assign computation

resources to each job in a cluster such that all jobs

shares equal resources overtime. Job weight is not

considered for each node. The later, introduced

capacity scheduling algorithm by Yahoo!, also allows

multiple users to share a MapReduce cluster. It

supports multiple queues and allocates a fraction of a

cluster’s computation resources to each queue, i.e., all

jobs submitted to a queue can only access to the

resource allocated to the queue. Similar to these two

algorithms, JoSS allows multiple jobs to

simultaneously share the computation resource of a

virtual MapReduce cluster. User needs to know system

information and make queue set and queue select group

for the job. But different from the two algorithms (fair

scheduling and capacity scheduling), JoSS further

provides reduce-task scheduling to improve job

performance.

We propose JOSS to appropriately schedule Map

Reduce jobs in a virtual Map Reduce cluster by

addressing both map-data locality and reduce-data

locality from the perspective of a tenant. By

classifying jobs into map-heavy and reduce-heavy jobs

and designing the corresponding policies to schedule

each class of job, JOSS increases data locality and

improves job performance.

IV. THE PROPOSED SCHEME

In this section, we describe how JoSS schedules

MapReduce jobs in a heterogeneous virtual

MapReduce cluster consisting of n datacenters, n>1.

Let cenc be the cth datacenter supporting the

composition of the heterogeneous virtual MapReduce

cluster, c=1,2,...,n. Let NVPS be the number of VPSs

provided by cenc, NVPSc > 1. Let VPSc be the mth

VPS provided by cenc,=1,2,...;NVPS;c. Assume that

each VPS has only one map slot and one reduce slot,

i.e., at most one map task and one reduce task can be

performed by a VPS simultaneously. For each

datacenter in cenc, JoSS maintains two permanent

queues, denoted by MQc;0 and RQc;0, to respectively

put the map tasks and the reduce tasks that are

scheduled datacentres to be executed by VPSs at cenc.

Let J be a MapReduce jobs submitted by a user, and D

is the input data processed by J. Based on the

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 334

predefined block size S, D will be divided into m

blocks B1,B2,...,Bm where m Let Bi is the i-th block

of D, i ¼ 1, 2,...,m . According to the total number of

the blocks of the jobs, J is divided into the same

number of map tasks.

Let M i be the ith map task that processes B, i=1,2,...,m.

Let r be the number of reduce tasks of J, and let Rj be

the jth reduce task of J where j=1, 2,...,r and r>1. In the

following, a VPS performing a map task is called a

mapper, whereas a VPS running a reduce task is called

a reducer.

4.1 Job Classification

Before we are introducing the algorithm of JoSS, we

first describe how the JoSS classifies different types of

jobs and schedules each class of jobs. Let Rreduce and

Mmap be the total reduce-input size and the total map-

input size of J, respectively. Based on the ratio of

Rreduce over Mmap, J can be classified into either a

reduce heavy job or a map-heavy job of the all jobs. If J

satisfies, implying that the network overhead is

dominated by the J’s reduce-input data set for the you

tube, then J is classified as a reduce-heavy job (RH job

for short). Otherwise, J is classified as a map-heavy job

(MH job for short). Note that the td is a threshold to

determine the classification, td >0: The best value of

the td will be derived as the

 Rreduce /Mmap> td

In fact, Mmap;the size of Bi, and Rreduce; where FPi is

the filtering percentage of Bi showing the ratio of Mi’s

map-output size of the all jobs over Mi’s map-input

size of the all job, FPi>0.

In order to reduce and the above classification, we

chose six MapReduce benchmarks: Word-Count, Grep,

Inverted-Index, Sequence-Count, Self-Join, and Term

Vector from PUMA to conduct the experiments on the

youtube dataset. The purpose is to study the minimum

playing the youtube dataset of the among the filtering-

percentage values of all map tasks of a MapReduce job.

In the first experiment, we randomly selected you tube

dataset from the youtube dataset is generated by the

user views based on the admin can be uploaded in the

web; from the you tube data set to be the input of each

benchmark.

4.2. Scheduling Policies

Policy A :

This policy is only designed for the small RH job. If 𝐽

is a small RH job, it would be better that each reducer

of 𝐽 is close to the all mappers of 𝐽 since the reducer

can more quickly retrieve its input data from all the

mappers from the input data.

But this also implies that all the mappers of 𝐽 should be

close to each other. The , policy A works as follows. It

first chooses 𝑐𝑒𝑛w, which is a datacenter having the

atleast amount of unprocessed tasks among all the 𝑘

datacenters in a VPS, Then it schedules all tasks of 𝐽 to

𝑐𝑒𝑛w by putting 𝐽’s map tasks and 𝐽’s reduce tasks at

the end of the all jobs 𝑀𝑄w,o and 𝑅𝑄w,o, respectively.

Policy B :

This policy is only designed for the small MH job. If 𝐽

is a small MH job, it would be better that each mapper

of 𝐽 is close to its input block of the datacenter, and

each reducer of 𝐽 is close to most mappers of 𝐽 jobs.

The, policy B works as follows: It schedules 𝐽’s all map

tasks based on the number of unique input blocks of 𝐽

held by each datacenter of the VPS. If a datacenter

holds more unique blocks of 𝐽, more map level tasks of

𝐽 will be scheduled to the VPSs at this datacenter.

Policy C :

This policy is only designed for the large jobs. If J is in

the large job to a virtual MapReduce cluster of the VPS,

using one datacenter of the cluster to run all map level

tasks of J might need several rounds to finish these map

level tasks, implying that the job turnaround time will

be prolong. To prevent this from happening, it is the

better not to use a single datacenter to run all these map

level tasks.

The , as long as J is the large job, JoSS utilizes policy C,

which in fact uses the same strategy of policy B to

schedule all (Map and Reduce) tasks of J. However, in

policy C, all the map level tasks scheduled to cenc will

not be put into MQc;0 since MQc;0 is reserved for the

only small jobs. Instead, these map level tasks will be

put into a new map-task queue created for cenc.

Similarly, the reduce level tasks of the large job

scheduled to cenc will be put into a new reduce-task

queue created for cenc, rather than RQc;0. The purpose

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 335

is to separate large jobs and small jobs into different

queues and allow JoSS to avoid job starvation and also

improve the execution performance; And VPS of the

both Map data locality and Reduced data locality.

4.3 JOSS And Its Two Variations

JoSS consists of three types of components: input-data

classifier, task scheduler, and task assigner. The input-

data classifier is designed to classify the input data

uploaded by a user into one of the two types: web

document and non-web document. The web document

refers to a file consisting of a lot of tags and text

enclosed in angle brackets. By simply inspecting the

first several sentences of a document and without tags,

the inputdata classifer can easily know if it is a web

document or not. After the classification, the input-data

classifier records the type of the input data in the JoSS .

Whenever receiving a MapReduce jobs from a user, the

task scheduler determines the type of the job and then

schedules the job based on either policy A, B, or C.

The task assigner then determines how to assign a task

to a VPS whenever the VPS has an idle slot.

The algorithm of the task scheduler. Upon receiving 𝐽,

the task scheduler retrieves 𝐽’s input data type

classified by the input-data classifier and checks

whether JoSS has executed 𝐽 on such input-data type or

not by calculating the corresponding hash value and

cen1.

comparing the value with 𝐻, where 𝐻 is a set of hash

values previously generated and recorded by JoSS. If

the hash value is not in 𝐻 (see line 4), it means that

JoSS does not know 𝐽’s average filtering-percentage

value and 𝐽’s job classification. To obtain the above

information, the task scheduler simply appends 𝐽’s all

map tasks and 𝐽’s all reduce tasks to two queues,

denoted by 𝑀𝑄!"!# and 𝑅𝑄!"!#, respectively. This

allows the task assigner to use the Hadoop FIFO

algorithm [1] to assign these tasks to idle VPSs. Once 𝐽

is completed, JoSS records the corresponding hash

value and averge filtering-percentage value. However,

if the hash value is in 𝐻 (see line 7), it means that JoSS

knows the average filtering-percentage value of 𝐽. Then

the task scheduler schedules 𝐽 as follows: If 𝐽 is a small

RH job, the abovementioned policy A is used to

schedule the tasks of 𝐽 (please see lines 9 to 12).

Task Scheduler of JoSS

Input: J and input data

Output: task scheduling result

Procedure:

1: Calculate the hash value for J's executable code

 and J's data of input type;

2: Let H be a set of the hash values

 previously generated by JoSS;

3: if the hash values are not in H

4: {

5: add all map level tasks of the J

 to the end of MQfifo;

6: add all reduce level tasks

 of the J to the end of RQfifo;}

7: else

8: {

9: if J is the small RH

 jobs{ // Using the policy A.

10: Let cenn be the data center having

 the least unprocessed tasks

cen1,cen2,....cenm;

11: add all map level tasks of the J

 to the end of MQw,0;

12: add all reduce level tasks

 of the J to the end of RQw,0;}

13: else

14: {

15: Let Lc is the set of all unique input

 blocks of held by cenc

16: where c=1,2,....,n;

17: let a=n; //n is the number

 of map level tasks of J//

18: while a>0{// not all map level tasks of

J are scheduled//

19: Let Ld be the first largest among of all

jobs L1, L2, ,,,Ln;

20: Let ILdI is the size of Ld;

21: Let cend is the related datacenter;

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 336

22: if J is the small MH jobs{ //

Using the policy B.

23: add ILdI all map level tasks of the J to

the end of MQd,0;}

24: else { // J is the large job, so using the

policy C//

25: let v be the total number of map level

task queues in cend;

26: Generate a new map level task queue

MQd,v+1;}

27: add ILdI all map level tasks of the J to

the end of MQd,v+1;}

28: for c=1ton

29: delete a block from Lc if the block is ib

Ld;}

30: a=a-ILdI;}

31: Let cene be the data center holding the

 largest number of unique input data

blocks of J;

32: if J is the small MH jobs{

 // Using the policy B.

33: add ILdI all map level tasks of

the J to the end of RQc,0;}

34: else { // J is the large job, so using the

policy C//

35: let v be the total number of

map level task queues in cend;

36: Generate a new map level task

queue RQc,v+1;}

37: add ILdI all map level tasks of

the J to the end of RQc,v+1;}}}

Figure 1: The algorithm of the task scheduler

Otherwise, it means that 𝐽 is either a small MH job or a

large job, and the task scheduler uses lines 14 to 37 to

schedule 𝐽. Recall that policies B and C are used to

schedule a small MH job and a large job, respectively.

If 𝐽 is a small MH job, the task scheduler directly

inserts 𝐽’s map tasks to the permanent map-task queue

of the determined datacenter (see line 22), and also

inserts 𝐽’s reduce tasks to the permanent reduce-task

queue of the determined datacenter (see line 33). In

other words, no additional queue will be created for any

small jobs. The purpose is not to increase the queue

management overhead of JoSS. In another case, if 𝐽 is a

large job, the task scheduler additionally generates a

new map-task queue and a new reduce-task queue to

respectively put 𝐽’s map tasks and 𝐽’s reduce tasks (see

lines 24 to 26 and lines 35 to 37). This will allow the

task assigner to properly assign small jobs and large

jobs to VPSs.

Task- driven & Task-assigner(TTA)

Input: an idle slot for the all input data VPSc,l

Output: a task assigned to the result as VPSc,l

Procedure:

1: Let Imap and Ired be the two indexes with the

same initial value is 0;

2: while VPSc,l has an ideal slot

3: {

4: Let Nmap be the total number

of map level tasks queues in cenc;

5: Let Nred be the total number

of reduce level tasks queues in cenc;

6: if the slot is a map{//the idle slot is a

map slot;//

7: if MQfifo it is not empty{

8: Use FIFO to assign the map

level task from MQfifo to VPSc,l

9: Delete the task from MQfifo;}

10: else{

11 Imap=Imap mod(Nmap+1);

12: To assign the first map level

task from MQc,Imap to VPSc,l;

13: Delete the task from

MQc,Imap;

14: Imap++;}}

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 337

15: else{ // the idle slot a reduce

slot;//

16: if RQfifo it is not

empty{

17: Use FIFO to assign the reduce

level task from RQfifo to VPSc,l

18: Delete the task from RQfifo;}

19: else{

20: Ired=Ired mod(Nred+1);

21: To assign the first re level task

from MQc,Ired to VPSc,l;

22: Delete the task from MQc,Ired;

23: Ired++;}}}

Figure 2. The algorithm of task-driven & task assigner

(TTA)

Recall that two variations of JoSS (i.e., JoSS-T and

JoSSJ) are proposed in this study. The former combines

the abovementioned task scheduler and a Task-driven

Task Assigner (TTA) to provide a fast task assignment.

The latter combines the task scheduler and a Job-driven

Task Assigner (JTA) to further improve the VPS-

locality. Fig. 5 illustrates how TTA works. Whenever

𝑉𝑃𝑆!,ℓ𝓁 has an idle map slot, TTA preferentially

assigns a map task from 𝑀𝑄!"!# to 𝑉𝑃𝑆!,ℓ𝓁 based on

the Hadoop FIFO algorithm (see lines 7 to 8). The goal

is to preferentially execute all newly submitted jobs

one by one and obtain their filtering-percentage values

to determine their job classifications. However, if

𝑀𝑄!"!# is empty, TTA assigns one of the first map

tasks from all the other map-task queues of 𝑐𝑒𝑛! in a

round-robin fashion (see lines 10 to 13) such that tasks

can be assigned quickly and job starvation can be

avoided.

Job- driven & Task-assigner(JTA)

Input: an idle slot for the all input data VPSc,l

Output: a task assigned to the result as VPSc,l

Procedure:

1: Let Imap and Ired be the two indexes with the

same initial value is 0;

2: while VPSc,l has an ideal slot

3: {

4: Let Nmap be the total number

of map level tasks queues in cenc;

5: Let Nred be the total number

of reduce level tasks queues in cenc;

6: if the slot is a map{//the idle slot is a

map slot;//

7: if MQfifo it is not empty{

8: Use FIFO to assign the map

level task from MQfifo to VPSc,l

9: Delete the task from MQfifo;}

10: else{

11 Imap=Imap mod(Nmap+1);

12: To assign the first map level

task from MQc,Imap to VPSc,l;

13: Delete the task from

MQc,Imap;

14: Imap++;}}

15: else{ // the idle slot a reduce

slot;//

16: if RQfifo it is not

empty{

17: Use FIFO to assign the reduce

level task from RQfifo to VPSc,l

18: Delete the task from RQfifo;}

19: else{

20: Ired=Ired mod(Nred+1);

21: To assign the first re level task

from MQc,Ired to VPSc,l;

22: Delete the task from MQc,Ired;

23: Ired++;}}}

Figure 3. The algorithm of task-driven & task assigner

(TTA)

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 338

Similarly, whenever 𝑉𝑃𝑆!,ℓ𝓁 has an idle reduce slot,

TTA preferentially assigns a reduce task from 𝑅𝑄!"!#

to 𝑉𝑃𝑆!,ℓ𝓁 (see lines 16 to 17). Only when 𝑅𝑄!"!# is

empty, TTA assigns one of the first reduce tasks from

other reduce-task queues of 𝑐𝑒𝑛! to 𝑉𝑃𝑆!,ℓ𝓁 (see lines

19 to 22). The above algorithm shows the algorithm of

JTA, which in fact is very similar to that of TTA.

The only difference is that JTA always uses the

Hadoop FIFO algorithm to assign a map task from each

map-task queue (please compare line 11 in two

variations) so as to further improve the VPS-locality.

V. SELECTING THE BEST THRESHOLD

5.1 The Small Workload

The following metrics are used to evaluate the

performance of the five algorithms under the small

workload.

1. Map-data locality, which can be divided into VPS

locality rate, Cen-locality rate, and off-cen, Note that

the values of the above three rates range from 0 to 1. A

value of one is desirable for both the VPS-locality rate

and the Cen-locality rate, but a value of zero is

desirable for the off-Cen rate.

 2. Reduce-data locality rate, which is defined as the

percentage of input data that a reducer can obtain from

its local datacenter. The value ranges from 0 to 1. A

value of one is desirable. 3. Inter-datacenter network

traffic (INT for short), which is the total inter-

datacenter network traffic generated during the

execution of the workload. A small value of INT is

desirable.

 4. Job turnaround time (JTT for short), which starts

when a job is submitted to the cluster and finishes when

the job is completed. A short JTT is desirable.

 5. VPS load, which shows the average number of map

tasks executed by each VPS and the corresponding

standard deviation. With this metric, we can know the

load balance among VPSs. A small standard deviation

is desirable.

Figure 4. The map-data locality results of the five

tested algorithms under the small workload

Even though JoSS-T and JoSS-J had similar

off-Cen result, the latter provided a higher VPS-locality

rate since it employs the JTA to further increase the

VPS locality.

This property also makes the VPS-locality rate

of JoSS-J higher than those of the other algorithms

when the executed jobs are small MH jobs. The reduce-

data locality results of all algorithms. Since JoSS-T and

JoSS-J employ the same reduce-task scheduling

approach, they have a very similar reduce-data locality

rate in every benchmark. In addition, it is clear that

JoSS-T and JoSS-J provided a higher reduce data

locality rate than the other three algorithms, especially

when RH jobs were executed. The reason is the same,

i.e., JoSS-T and JoSS-J always use policy A (which

favors reduce-data locality) to schedule small RH jobs.

5.2 The Mixed Workload

We evaluated how the five algorithms perform when

they execute the mixed workload. Similar to the

metrics used earlier, the map-data locality, reduce-data

locality, INT, and VPS load were also used to evaluate

the five algorithms. However, JTT was not considered

in this experiment since the input sizes processed by

the jobs in the mixed workload were different, which

makes this metric meaningless. Hence, we further used

the following metrics to better measure these

algorithms:

Workload turnaround time (WTT for short), which is

the total time required by the cluster to complete the

entire mixed workload.

Cumulative job completion rate during the execution of

the mixed workload.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 339

The map-data locality results of all algorithms under

the mixed workload. Among all algorithms, JoSS-T

caused the lowest VPS-locality rate, regardless of job

type. The reason is obvious, i.e., JoSS-T uses TTA to

quickly assign a task to an idle VPS, rather than

increasing the VPS locality. On the other hand, by

comparing, we can see that the VPS-locality rates of

the other four algorithms on the mixed workload

increased. This is because each VPS held more input

blocks of large jobs and therefore improved the VPS-

locality rate. This property also causes that JoSS-J was

not always better than those of the other three

algorithms in terms of VPS-locality. Nevertheless, for

all tested MH jobs (i.e., WC, SC, II, and Grep jobs),

JoSS-T and JoSS-J had similar off-Cen rates, which

were still much lower than those of the other three

algorithms.

Figure 5. The map-data locality results of the five

tested algorithms or the mixed workload

Since JoSS-T and JoSS-J had good data-locality

performances, they dramatically reduced the inter-

datacenter network traffic for retrieving map-input data

and reduce-input data during the execution of the

mixed workload.

5.3 Scheduling Overhead

 We evaluate the overhead caused by each tested

algorithm. The CPU idle rate and memory load of the

Hadoop master server when the five algorithms

separately executed the mixed workload. It is clear that

both JoSS-T and JoSS-J did not significantly increase

the CPU and memory load of the master server

compared with the other algorithms. In addition, we

further evaluated the extra storage space consumed by

JoSS-T and JoSS-J to store all necessary information

about every newly executed job, including the

corresponding hash value and average filtering-

percentage value.

In our experiments, each such a record is about 20

bytes. Hence, the total storage consumption is

proportional to the number of the newly executed jobs.

Based on the above analyses, it is clear that JoSS-T and

JoSS-J do not incur significant computation overhead

memory overhead and storage overhead to the Hadoop

master server.

VI. PERFORMANCE EVALUATION AND

COMPARISON

We evaluate and compare JoSS-T and JoSS-J with

three scheduling algorithms provided by Hadoop,

including the FIFO algorithm (FIFO for short), the fair

scheduling algorithm (Fair for short), and the capacity

algorithm (Capa for short). We established a virtual

MapReduce cluster by renting 31 VPSs from Linode

[12], which is a privately owned VPS provider based in

New Jersey. One VPS acts as the Hadoop master server

and is located at a datacenter in Dallas. The remaining

30 VPSs act as slaves. Among them, 15 VPSs are

located at a datacenter in Dallas and the other 15 VPSs

are located at a datacenter in Atlanta. Each VPS runs

Ubuntu 10.04 with two CPU cores, 2 GB RAM, and 48

GB SSD storage space. Each VPS has a map slot and a

reduce slot. We use Hadoop MRv1, which is widely

adopted in production settings [28], as the

implementation of MapReduce, and modify the source

code of Hadoop-0.20.2 to realize JoSS-T and JoSS-J.

To study how different MapReduce jobs with different

filtering-percentage values influence the performances

of the five tested algorithms, we chose the following

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 340

five MapReduce benchmarks to conduct our

experiments. The first four jobs are from the

MapReduce benchmark suite called PUMA [29], and

the corresponding input data are web documents

chosen from [30]. The last one job is created by

ourselves, and its input data is a set of you tube TXT

files.

Word-Count (WC for short), which counts the

occurrence of each word in data files.

1) Sequence-Count (SC for short), which generates a

count of all unique sets of three consecutive words

in data files.

2) Inverted-Index (II for short), which takes a list of

data files as input and generates word-to-file

indexing.

3) Grep, which searches for a pattern in data files.

4) Permu, which generates the permutation for three

consecutive DNA sequences in DNA data files.

Consequently, not all tested MapReduce

benchmarks will be classified as the same job type

by JoSS-T and JoSS-J. Some of them will be

classified as MH jobs, and the others will be

classified as RH jobs.

We used the above five benchmarks to create a small

workload and a mixed workload, and used the two

workloads to evaluate the performances of the five

algorithms.

VII. CONCLUSIONS

In this paper, we have introduced JoSS for scheduling

MapReduce jobs in a virtual MapReduce cluster

consisting of a set of VPSs rented from a VPS provider.

Different from current MapReduce scheduling

algorithms, JoSS takes both the map data locality and

reduce-data locality of a virtual MapReduce cluster into

consideration. JoSS classifies jobs into three job types,

i.e., small map-heavy job, small reduce-heavy job, and

large job, and introduced appropriate policies to

schedule each type of job. In addition, the two

variations of JoSS (i.e., JoSS-T and JoSS-J) are further

introduced to respectively achieve a fast task

assignment an improve the VPS-locality.

The extensive experimental results demonstrate that

both JoSS-T and JoSS-J provide a better map-data

locality, achieve a higher reduce-data locality, and

cause much less inter-datacenter network traffic as

compared with current scheduling algorithms employed

by Hadoop. The experimental results also show that

when the jobs of a MapReduce workload are all small

to the underlying virtual MapReduce cluster,

employing JoSS-T is more suitable than the other

algorithms since JoSS-T provides the shortest job

turnaround time. On the other hand, when the jobs of a

MapReduce workload are not all small to the virtual

MapReduce cluster, adopting JoSS-J is more

appropriate because it leads to the shortest workload

turnaround time. In addition, the two variations of JoSS

have a comparable load balance and do not impose a

significant overhead on the Hadoop master server

compared with the other algorithms.

VIII. REFERENCES

[1]. Durga solutions by mapreduce "

https://www.youtube.com/watchv=6oemzejdmp8

"

[2]. Hadoop, http://hadoop.apache.org (dec. 3, 2014)

[3]. S. Chen and s. Schlosser, "map-reduce meets

wider varieties of applications," technical report

irp-tr-08-05, intel research, 2008.

[4]. B. White, t. Yeh, j. Lin, and l. Davis, "web-scale

computer vision using mapreduce for multimedia

data mining," in proceedings of the tenth

international workshop on multimedia data

mining, pp. 1-10. Acm, july 2010.

[5]. A. Matsunaga, m. Tsugawa, and j. Fortes,

"cloudblast: combining mapreduce and

virtualization on distributed resources for

bioinformatics applications," in ieee fourth

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 341

international conference on escience, pp. 222-

229, december 2008.

[6]. X-rime. Http://xrime.sourceforge.net/ (dec. 3,

2014)

[7]. K. Wiley, a. Connolly, j. Gardner, s. Krughoff,

m. Balazinska, b. Howe, y. Kwon, and y. Bu,

"astronomy in the cloud: using mapreduce for

image co-addition," astronomy, 123(901), pp.

366-380, 2011.

[8]. Disco, http://discoproject.org (dec. 3, 2014)

[9]. Gridgain, http://www.gridgain.com (dec. 3,

2014)

[10]. David d. Clark, member, ieee, kenneth t. Pogran,

member, ieee, and david p. Wed " an

introduction to local area networks"

https://groups.csail.mit.edu/ana/publications/pub

pdfs/an%20introduction%20to%20local%20area

%20networks.pdf

[11]. Vidyullatha Pellakuri1 , Dr.D. Rajeswara Rao2"

Hadoop Mapreduce Framework in Big Data

Analytics "

http://ijcttjournal.org/Volume8/number-3/IJCTT-

V8P121.pdf

[12]. Abdullah Almurayh" Virtual Private Server" in

2010

http://cs.uccs.edu/~cs526/studentproj/projS2010/

aalmuray/doc/Almurayh_VPS.pdf

[13]. " Improving Performance of Heterogeneous

MapReduce Clusters with Adaptive Task

Tuning"

http://ieeexplore.ieee.org/document/7523426/

[14]. " Optimal MapReduce Job Scheduling algorithm

across Cloud Federation "

http://csce.ucmss.com/books/LFS/CSREA2017/P

DP3681.pdf

[15]. Zhenhua Guo, Geoffrey Fox, Mo Zhou "

Investigation of Data Locality in MapReduce "

https://pdfs.semanticscholar.org/48b5/568d8cec2

2d167c88d10a4de01f48a4740d0.pdf

[16]. " Self-Adjusting Slot Configurations for

Homogeneous and Heterogeneous Hadoop

Clusters"

http://ieeexplore.ieee.org/document/7065298/

[17]. Z. Guo, G. Fox, and M. Zhou, "Investigation of

data locality in mapreduce," In Proceedings of

the 2012 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid

Computing (CCGrid 2012), pp. 419-426, May

2012.

[18]. C. He, Y. Lu, and D. Swanson, "Matchmaking: A

new mapreduce scheduling technique," In 2011

IEEE Third International Conference on Cloud

Computing Technology and Science (CloudCom

2011), pp. 40-47, November 2011. [16] T

[19]. T. White, "Hadoop: the definitive guide,"

O'Reilly Media, Yahoo! Press, June 5, 2009. [

[20]. M. Zaharia, D. Borthakur, J. Sen Sarma, K.

Elmeleegy, S. Shenker, and I. Stoica, "Delay

scheduling: a simple technique for achieving

locality and fairness in cluster scheduling," In

Proceedings of the 5th European conference on

Computer systems, pp. 265-278. ACM, April

2010,

http://dx.doi.org/10.1145/1755913.1755940

[21]. J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong,

"BAR: an efficient data locality driven task

scheduling algorithm for cloud computing," In

11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid

2011), pp. 295-304, May 2011.

[22]. "Hadoop MapReduce Scheduling Algorithms - A

Survey"

http://www.ijcsmc.com/docs/papers/December20

15/V4I12201548.pdf

[23]. Fair Scheduler Guide,

http://archive.cloudera.com/cdh/3/hadoop0.20.2+

737/fair_scheduler.html (Dec. 3, 2014)

[24]. Capacity Scheduler Guide,

http://archive.cloudera.com/cdh/3/hadoop0.20.2+

737/capacity_scheduler.html (Dec. 3, 2014)

[25]. "https://www.youtube.com/watchv=AcUauzCn7

RE" youtube API extract data from youtube.

