
CSEIT172568 | Received : 10 Sep 2017 | Accepted : 22 Sep 2017 | September-October-2017 [(2)5: 370-373]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

370

Splitting and Grouping of Jobs in Map Reduction for Various

Multicore Processors
M. Navya

1
, N. Padmaja

 2

1
M.Tech Student, Department of Computer Science and Engineering, Padmavathi Mahila Visvavidyalayam,

Tirupati, India
2
Assistant Professor, Department of Computer Science and Engineering, Padmavathi Mahila Visvavidyalayam,

Tirupati, India

ABSTRACT

The functionality of modern multi-core processors is often driven by a given power budget that requires designers to

evaluate different decision trade-offs, e.g., to choose between many slow, power-efficient cores, or fewer faster,

power-hungry cores, or a combination of them. Here, we prototype and evaluate a new Hadoop scheduler, called

DyScale, that exploits capabilities offered by heterogeneous cores within a single multi-core processor for achieving

a variety of performance objectives. A typical Map Reduce workload contains jobs with different performance goals:

large, batch jobs that are throughput oriented, and smaller interactive jobs that are response time sensitive.

Heterogeneous multi-core Processors enable creating virtual resource pools based on “slow” and “fast” cores for

multi-class priority scheduling. Since the same data can be accessed with either “slow” or “fast” slots, spare

resources (slots) can be shared between different resource pools. Using measurements on an actual experimental

setting and via simulation, we argue in favor of heterogeneous multi-core processors as they achieve “faster” (up to

40%) processing of small, interactive Map Reduce jobs, while offering improved throughput (up to 40%) for large,

batch jobs. We evaluate the performance benefits of DyScale versus the FIFO and Capacity job schedulers that are

broadly used in the Hadoop community.

Keywords: Map Reduce, Hadoop scheduler, Dyscale, throughput, Heterogeneous processors

I. INTRODUCTION

In the existing system we have implemented the study

to reduce network traffic cost for a Map Reduce job by

designing a novel intermediate data partition scheme.

Furthermore, we jointly consider the aggregator

placement problem, where each aggregator can reduce

merged traffic from multiple map tasks. A

decomposition-based distributed algorithm is proposed

to deal with the large-scale optimization problem for

big data application and an online algorithm is also

designed to adjust data partition and aggregation in a

dynamic manner. Finally, extensive simulation results

demonstrate that our proposals can significantly reduce

network traffic cost under both offline and online cases.

Map Reduce and its open source implementation

Hadoop offer a scalable and fault-tolerant framework

for processing large data sets. Map Reduce jobs are

automatically parallelized, distributed, and executed on

a large cluster of commodity machines. Hadoop was

originally designed for batch-oriented processing of

large production jobs. These applications belong to a

class of so-called scale-out applications, i.e., their

completion time can be improved by using a larger

amount of resources. in the proposed system Here, we

design and evaluate DyScale, a new Hadoop scheduler

that exploits capabilities offered by heterogeneous

cores for achieving a variety of performance objectives.

These heterogeneous cores are used for creating

different virtual resource pools, each based on a distinct

core type. These virtual pools consist of resources of

distinct virtual Hadoop clusters that operate over the

same datasets and that can share their resources if

needed. Resource pools can be exploited for multiclass

job scheduling. We describe new mechanisms for

enabling “slow” slots (running on slow cores) and “fast”

slots (running on fast cores) in Hadoop and creating the

corresponding virtual clusters. Extensive simulation

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 371

experiments demonstrate the efficiency and robustness

of the proposed framework. Within the same power

budget, DyScale operating on heterogeneous multi-core

processors provides significant performance

improvement for small, interactive jobs comparing to

using homogeneous processors with (many) slow cores.

DyScale can reduce the average completion time of

time-sensitive interactive jobs by more than 40%. At

the same time, DyScale maintains good performance

for large batch jobs compared to using a homogeneous

fast core design (with fewer cores). The considered

heterogeneous configurations can reduce completion

time of batch jobs up to 40%. There is a list of

interesting opportunities for improving Map Reduce

processing offered by heterogeneous processor design.

First of all, both fast and slow Hadoop slots have the

same access to the underlying HDFS data.

programmers. This paper focus on improve the

MapReduce performance through a heterogeneity-

aware data placement strategy: faster nodes store larger

amount of input data. In this way, more tasks can be

executed by faster nodes without a data transfer for the

map execution. It addresses the problem of how to

place data across nodes in a way that each node has a

balanced data processing load. Given a data intensive

application running on a Hadoop MapReduce cluster,

our data placement scheme adaptively balances the

amount of data stored in each node to achieve

improved data-processing performance.

G. Lee,G. Chun, and R. H. Katz, conducted an

experiment on “Heterogeneity-aware resource

allocation and scheduling in the cloud [5],” Data

analytics are key applications running in the cloud

computing environment. To improve performance and

cost-effectiveness of a data analytics cluster in the

cloud, the data analytics system should account for

heterogeneity of the environment and workloads. In

addition, it also needs to provide fairness among jobs

when multiple jobs share the cluster. In this work it

mainly focus on resource allocation and job

II. DYSCALE FRAMEWORK

We propose a new Hadoop scheduling framework,

called DyScale, for efficient job scheduling on the

heterogeneous multi-core processors. First, we describe

the DyScale scheduler that enables creating statically

configured, dedicated virtual resource pools based on

different types of available cores. Then, we present the

enhanced version of DyScale that allows the shared use

of spare resources among existing virtual resource

pools. The number of fast and slow cores is SoC

design specific and workload dependent. Here, we

focus on a given heterogeneous multi-core processor in

each server node, and the problem of taking advantage

of these heterogeneous capabilities, especially

compared to using homogenous multi-core processors

with the same power budget. Our goal is twofold: 1)

design a framework for creating virtual Hadoop

clusters with different processing capabilities (i.e.,

clusters with fast and slow slots); and 2) offer a new

scheduler to support jobs with different performance

objectives for utilizing the created virtual clusters and

sharing their spare resources.

Dedicated Virtual Resource Pools for Different Job

Queues:

DyScale offers the ability to schedule jobs based on

performance objectives and resource preferences. For

example, a user can submit small, time-sensitive jobs to

the Interactive Job Queue to be executed by fast cores

and large, throughput-oriented jobs to the Batch Job

Queue for processing by (many) slow cores. It is also

possible for the scheduler to automatically recognize

the job type and schedule the job on the proper queue.

For example, small and large jobs can be categorized

based on the number of tasks. A job can be also

classified based on the application information or by

adding a job type feature in job profile.

The attractive part of such virtual resource pool

arrangement is that it preserves data locality because

both fast and slow slots have the same data access to

the datasets stored in the underlying HDFS. Therefore,

any dataset can be processed by either fast or slow

virtual resource pools, or their combination. To support

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 372

a virtual resource pool design, the Task Tracker needs

additional mechanisms for the following functionalities:

 The ability to start a task on a specific core, i.e., to

run a slot on a specific core and assign a task to it;

 To maintain the mapping information between a

task and the assigned slot type.

The Task Tracker always starts a new JVM for each

task instance (if the JVM reuse feature in Hadoop is

disabled). It is done such that a JVM failure does not

impact other tasks or does not take down the Task

Tracker. Running a task on a specific core can be

achieved by binding the JVM to that core. We use the

CPU affinity to implement this feature. By setting the

CPU affinity, a process can be bound to one or a set of

cores. The Task Tracker calls spawn New JVM class to

spawn a JVM in a new thread. The CPU affinity can be

specified during spawn to force the JVM to run on the

desired fast or slow core. An additional advantage of

using the CPU affinity is that it can be changed during

runtime. If the JVM reuse feature is enabled in the

Hadoop configuration (note, that the JVM reuse can be

enabled only for the tasks of the same job), the task can

be placed on a desired core by changing the CPU

affinity of the JVM.

Managing Spare Cluster Resources

Static resource partitioning and allocation may be

inefficient if a resource pool has spare resources (slots)

but the corresponding Job Queue is empty, while other

Job Queue(s) have jobs that are waiting for resources.

For example, if there are jobs in the Interactive Job

Queue and they do not have enough fast slots, then

these jobs should be able to use the available (spare)

slow slots. We use the Virtual Shared (vShare)

Resource pool to utilize spare resources; the spare slots

are put into the vShare pool. Slots in the vShare

resource pool can be used by any job queue.

The efficiency of the described resource sharing could

be further improved by introducing the Task Migration

mechanism. For example, the jobs from the Interactive-

Job Queue can use spare slow slots until the future fast

slots become available. These tasks are migrated to the

newly released fast slots so that the jobs from the

Interactive Job Queue always use optimal resources.

Similarly, the migration mechanism allows the batch

job to use temporarily spare fast slots if the Interactive

Job Queue is empty. These resources are returned by

migrating the batch job from the fast slots to the

released slow slots when a new interactive job arrives.

DyScale allows specifying different policies for

handling spare resources. The migration mechanism is

implemented by changing the JVM’s CPU affinity

within the same SoC. By adding the MIGRATE TASK

action in the Task Tracker Action list in heartbeat

Response, the Job Tracker can inform the Task Tracker

to migrate the designated task between slow and fast

slots.

III. CONCLUSION

Here we exploit the new opportunities and performance

benefits of using servers with heterogeneous multi-core

processors for Map Reduce processing. We present a

new scheduling framework, called DyScale that is

implemented on top of Hadoop. DyScale enables

creating different virtual resource pools based on the

core-types for multi-class job scheduling. This new

Framework aims at taking advantage of capabilities of

heterogeneous cores for achieving a variety of

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 373

performance objectives. DyScale is easy to use because

the created virtual clusters have access to the same data

stored in the underlying distributed file system, and

therefore, any job and any dataset can be processed by

either fast or slow virtual resource pools, or their

combination. Map Reduce jobs can be submitted into

different queues, where they operate over different

virtual resource pools for achieving better completion

time (e.g., small jobs) or better throughput (e.g., large

jobs). It is easy to incorporate the DyScale scheduler

into the latest Hadoop implementation with YARN [30],

as YARN has a pluggable job scheduler as one of its

components.

IV. REFERENCES

[1]. T. White, Hadoop: The Definitive Guide. Yahoo

Press.

[2]. F. Ahmad et al., "Tarazu: Optimizing Map

Reduce on Heterogeneous Clusters," in

Proceedings of ASPLOS, 2012.

[3]. J. Dean and S. Ghemawat, "Map Reduce:

Simplified data processing on large clusters,"

Communications of the ACM, vol. 51, no. 1,

2008.

[4]. M. Zaharia et al., "Delay scheduling: A simple

technique for Achieving locality and fairness in

cluster scheduling," in Proceedings of EuroSys,

2010.

[5]. Apache, "Capacity Scheduler Guide," 2010.

Online]. Available:

http://hadoop.apache.org/common/docs/r0.20.1/

capacity scheduler.html

[6]. Z. Zhang, L. Cherkasova, and B. T. Loo,

"Benchmarking approach for designing a map

reduce performance model," in ICPE, 2013, pp.

253–258.

[7]. S. Rao et al., "Sailfish: A Framework For Large

Scale Data Processing," in Proceedings of SOCC,

2012.

[8]. A. Gates, O. Natkovich, S. Chopra, P. Kamath, S.

Narayanam, C. Olston, B. Reed, S. Srinivasan,

and U. Srivastava, "Building a high-level

dataflow system on top of map reduce: The pig

experience," PVLDB, vol. 2, no. 2, pp. 1414–

1425, 2009.

[9]. A. Verma, L. Cherkasova, and R. H. Campbell,

"ARIA: Automatic Resource Inference and

Allocation for MapReduce Environments," in

Proc. of ICAC, 2011.

[10]. "Play It Again, SimMR!" in Proceedings of Intl.

IEEE Cluster’ 2011.

[11]. S. Ren, Y. He, S. Elnikety, and S. McKinley,

"Exploiting Processor Heterogeneity in

Interactive Services," in Proceedings of ICAC,

2013.

[12]. H. Esmaeilzadeh, T. Cao, X. Yang, S. M.

Blackburn, and K. S. McKinley, "Looking back

and looking forward: power, performance, and

upheaval," Commun. ACM, vol. 55, no. 7, 2012.

[13]. C. Bienia, S. Kumar, J. Singh, and K. Li, "The

PARSEC benchmark suite: Characterization and

architectural implications." in Technical Report

TR-811-08, Princeton University, 2008.

[14]. "Pass Mark Software. CPU Benchmarks," 2013.

Online]. Available:

http://www.cpubenchmark.net/cpu.php?cpu=Intel

+ Xeon+E3-1240+%40+3.30GHz

[15]. F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni,

"Optimizing power and performance trade-offs

of map reduce job processing with heterogeneous

multi-core processors," in Proc. of the IEEE 7th

International Conference on Cloud Computing

(Cloud’2014), June, 2014.

[16]. A. Verma et al., "Deadline-based workload

management for map reduce environments:

Pieces of the performance puzzle," in Proc. of

IEEE/IFIP NOMS, 2012.

[17]. R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.

Jouppi, and K. I. Farkas, "Single-is a

heterogeneous multi-core architectures for

multithreaded workload performance," in ACM

SIGARCH Computer Architecture News, vol.

32, no. 2, 2004.

[18]. K. Van Craeynest, A. Jaleel, L. Eeckhout, P.

Narvaez, and J. Emer, "Scheduling

heterogeneous multi-cores through performance

impact estimation (pie)," in Proceedings of the

39th International Symposium on Computer

Architecture, 2012.

[19]. M. Becchi and P. Crowley, "Dynamic thread

assignment on heterogeneous multiprocessor

architectures," in Proceedings of the 3rd

conference on Computing frontiers, 2006.

[20]. D. Shelepov and A. Fedorova, "Scheduling on

heterogeneous multi core processors using

architectural signatures," in Proceedings of the

Workshop on the Interaction between Operating

Systems and Computer Architecture, 2008.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 374

[21]. K. Van Craeynest and L. Eeckhout,

"Understanding fundamental design choices in

single-is a heterogeneous multicore

architectures," ACM Transactions on

Architecture and Code Optimization (TACO),

vol. 9, no. 4, p. 32, 2013.

[22]. M. Zaharia et al., "Improving map reduce

performance in heterogeneous environments," in

Proceedings of OSDI, 2008.

[23]. Q. Chen, D. Zhang, M. Guo, Q. Deng, and S.

Guo, "Samr: A self-adaptive map reduce

scheduling algorithm in heterogeneous

environment," in IEEE 10th International

Conference on Computer and Information

Technology (CIT), 2010.

[24]. R. Gandhi, D. Xie, and Y. C. Hu, "Pikachu: How

to rebalance load in optimizing map reduce on

heterogeneous clusters," in Proceedings of 2013

USENIX Annual Technical Conference.

USENIX Association, 2013.

[25]. J. Xie et al., "Improving map reduce performance

through data placement in heterogeneous hadoop

clusters," in Proceedings of the IPDPS

Workshops: Heterogeneity in Computing, 2010.

[26]. G. Gupta, C. Fritz, B. Price, R. Hoover, J.

DeKleer, and C. Witteveen, "Throughput

Scheduler: Learning to Schedule on

Heterogeneous Hadoop Clusters," in Proc. of

ICAC, 2013.

[27]. G. Lee, B.-G. Chun, and R. H. Katz,

"Heterogeneity-aware resource allocation and

scheduling in the cloud," in Proceedings of the

3rd USENIX Workshop on Hot Topics in Cloud

Computing, Hot Cloud, 2011.

[28]. J. Polo et al., "Performance management of

accelerated map reduce workloads in

heterogeneous clusters," in Proceedings of the

41st Intl. Conf. on Parallel Processing, 2010.

[29]. W. Jiang and G. Agrawal, "Mate-cg: A map

reduce-like framework for accelerating data-

intensive computations on heterogeneous

clusters," in Parallel Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th

International, May 2012, pp. 644–655.

[30]. Apache, "Apache Hadoop Yarn," 2013. Online].

Available:

http://hadoop.apache.org/docs/current/hadoop-

yarn/ hadoop-yarn-site/YARN.html

[31]. A. Verma, L. Cherkasova, and R. H. Campbell,

"Resource Provisioning Framework for Map

Reduce Jobs with Performance Go als," Proc. of

the 12th ACM/IFIP/USENIX Middleware

Conference, 2011.

