
CSEIT172572 | Received : 10 Sep 2017 | Accepted : 22 Sep 2017 | September-October-2017 [(2)5: 374-379]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

374

A Survey for Different Classifications of Distributed Systems

Scheduling Using Markov Chain Model
Shweta Jain

1
, Saurabh Jain

2

1Research Scholar, Faculty of Computer Science, Pacific Academy of Higher Education and Research University, Udaipur,Rajasthan, India

 2Professor, Shri Vaishnav Institute of Computer Applications, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, Madhya Pradesh, India

ABSTRACT

With the establishment of internet with network technologies and the maturity in the computing industry, the

distributed system has become popular and important with aspects of a challenging activity. The performance of

computing system has enhanced extensively with the adding up of the concepts of multiprocessing and multi-

computing. In distributed system, computing and developing of scheduling algorithm for vast spectrum of

applications are a key problem and of greater interest of studying and scheduling for resource management. This

paper presents a survey to classify various existing distributed system scheduling to apply the concept of Markov

chain model to improve their throughput and performance.

Keywords : Coscheduling, Distributed system, Markov Chain, Scheduling, Stochastic, Transition Matrix

I. INTRODUCTION

A distributed system means different things to different

people. A distributed system consists of a collection of

loosely coupled diverse computing units which are

geographically distributed and connected by a

communications network. The key illustrations of

distributed systems are web services and peer-to-peer

systems. Over the last decade distributed systems have

been emerging as popular computing platforms for

computationally intensive applications with diverse

computing needs to design and implement resource

management systems with a variety of architectures

and services.

Distributed system scheduling refers to the way

processes are assigned to run on existing processors.

But the problems lie in developing a scheduling

algorithm to suit the various forms of applications,

process of partitioning the application into tasks,

encouraging coordinated communication among tasks,

monitoring the synchronization among tasks, and

mapping the tasks to the machines. It will also affect

the system performance, then reduces the cost of

performance, increases the efficiency of the system. In

general, resource management is the use of available

processors in the most efficient way possible.

Scheduling the independent task is to reduce the

computational time. Each independent task is

scheduled to available suitable resources and runtime

environment.

Scheduling algorithms play a key role in obtaining

high performance in parallel and distributed systems.

Nowadays, a wide variety of scheduling algorithms for

distributed systems have been reported in the literature

[1] [2] [3] [4] [5] [6] [7] [8] [9]. A probability-based

stochastic model Markov chain is applied in order to

determine the performance of these scheduling

algorithms of distributed system. [11] Elaborated study

of a variety of stochastic processes and their uses in the

various applications. Some other useful contributions

are for distributed system scheduling by [11] [12] [13]

[14] [15].

II. SCHEDULING ALGORITHM MEASURES

Performance measures for distributed scheduling

algorithms are as follows.

 System utilization refers percentage of time the

resource is busy.

 Throughput refers the number of jobs processed

in a given time period.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 3

 Turnaround time refers as the sum of waiting time

and execution time.

 Job slowdown refers as the ratio of the response

time of a job to its actual execution time. It

primarily occurs due to a long waiting time for

execution of job.

 Economic-profit refers profit earned by resource

according to usage.

 Make-span determines by subtracting start time of

the first job from the actual finish time of the last

job of particular application.

 Schedule Length Ratio divides the make-span by

the expected time needed to execute the tasks

present on the Longest Computation Path on the

fastest resource of the application.

 Scheduling time depends on the time complexity

and indicates how much time is taken by

scheduling algorithm for making decision on

assignment of jobs onto resources.

 Speedup indicates how faster an application runs

on multiple resources as compared to running it

on a single fastest resource.

 Flow time refers the sum of completion time of all

the jobs.

 Economic Cost indicates total cost incurred for

executing all jobs of the application.

 Fairness refers each process gets a fair share of

the processors and resources.

III. GENERAL CLASSIFICATION OF

DISTRIBUTED SYSTEM SCHEDULING

This classification of scheduling is based on different

criteria, such as static vs. dynamic environment,

centralized vs. distributed etc. Different distributed

computing scheduling is classified as follows in the

figure:

There are two levels of scheduling in a system: global

scheduling and local scheduling [10].

 Local vs. Global scheduling

At the highest, level, there is local and global

scheduling. Local scheduling is involved with the

assignment of processor time of a single processor to

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 375

processes. Global scheduling is the problem of

deciding where to execute a process. The job of local

scheduling is left to the operating system of the

processor to which the process is ultimately allocated.

This gives processors increased independence while

reducing the responsibility and consequently overhead

of the global scheduling.

 Static vs. Dynamic scheduling

The next level in the hierarchy scheduling is a choice

between static and dynamic scheduling which is based

on the time at which the scheduling decisions are made.

Static scheduling refers assigning processes to

processors at compile time. Dynamic scheduling

means that processes are assigned to a processor when

they begin execution (run time), and that they may be

reassigned while they are running. A static scheduler

makes decisions based only on information concerning

the processes (expected execution time, I/O

characteristics, etc.) and the static system (processor

power, network configuration, etc.), while a dynamic

scheduler takes into account the current state of the

system (workload, queue lengths, etc.).

In the dynamic scheduling problem, priori knowledge

is required about the resource needs of a process. It is

also unidentified in what environment the process will

execute during its lifetime. In the static case, a decision

is made for a process image before it is ever executed,

while in the dynamic case no decision is made until the

process begins its life in the dynamic environment of

the system. The principal advantage of static

scheduling is its simplicity, because system state

information need not be maintained. It is also effective

when the workload can be sufficiently well described

before making a decision. However, it fails to adjust to

fluctuations in the system load.

 Optimal vs. Sub-optimal

Because all information regarding the state of the

system and the resource needs of a process is known,

an optimal assignment can be made based on some

criterion function. Commonly use these following

optimization measures are

1. Minimizing of the total process completion time.

2. Maximizing utilization of resources in the system.

3. Maximizing system throughput.

Because of the size of a distributed system (large

number of processes, processors, and other resources

that involve some restrictions) static scheduling is a

complex computational problem. Thus getting optimal

solutions can be very expensive and not feasible in a

reasonable time period in many cases but sub-optimal

solutions may be better in those cases. Dividing sub-

optimal solutions to the scheduling problem is into two

general categories.

 Approximate vs. Heuristic

The approximate approach uses the same formal

computational model for the algorithm, but instead of

searching the entire solution space for an optimal

solution, it is to be satisfied when finding a good one.

These solutions are categorized as sub-optimal-

approximate. The problem is how to find out that a

solution is good enough. The factors which determine

whether this approach is worthy:

1. Availability of a function to evaluate a solution.

2. The time required to evaluate a solution.

3. The ability to judge the value of an optimal

solution according to some measures.

4. Availability of a method for intelligently trimming

the solution space.

The second category is based on heuristic search

strategies which represent the solutions to the static

scheduling problem which require the most reasonable

amount of time and other system resources to perform

their function. The heuristic schedulers use special

parameters which affect the system and much simpler

to calculate. This decreases the overhead involved in

passing information between processors while

dropping the interference among processes which may

run without synchronization with one another.

 Optimal vs. Sub-optimal approximate

techniques

Regardless of whether a static solution is optimal or

sub-optimal-approximate, there are four basic

categories of task allocation algorithms which can be

used to arrive at an assignment of processes to

processors.

1. Enumeration (solution space and search).

2. Graph theory.

3. Mathematical programming.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 376

4. Queuing theory.

 Distributed vs. Non-distributed

The next concern (under dynamic solutions) considers

whether the status information of all processors and

execution environments is to be collected at one

location or physically non-distributed, or whether the

decision-making process is to be physically distributed

among the processors that utilize information stored in

many places.

The most important feature of making decisions

centrally (non-distributed) is simplicity but such

systems suffer from gathering information and

maintaining a proper system state in one central

location and leading to a large time overhead, since

there are transfer delays and messages lost, low

reliability of systems leads to failure of the node or

falling down of the entire system due to load

scheduling. A globally distributed load-scheduling

algorithm does not suffer from the above drawbacks

that are avoided collecting status information at a

single location so that the schedulers can respond

rapidly to dynamic changes in the system state. The

scheduler decides that if one computer fails, others can

continue their jobs.

 Cooperative vs. Non-cooperative

In distributed dynamic global scheduling, there are

mechanisms cooperative which involve cooperation

between the distributed components and mechanisms

non-cooperative in which the individual processors

make decisions independently without interferences to

other processors. Degrees of independence of each

processor determine how its own resources should be

used. Each processor's local operating system is

concerned with making decisions with other processors

in the system in order to achieve some global goal,

instead of making decisions based on the way in which

the decision may also affect its local performance.

Distributed system have already many schedulers and

processors, each one is responsible for performing

certain activity in scheduling processes with

cooperation of procedures, rules and current system

users and status.

 Lower sub-branches of the dynamic branch

In the static scheduling, the classification hierarchy has

attained a point to consider optimal, sub-optimal-

approximate, and sub-optimal-heuristic solutions.

Optimal solutions may be optimal locally or globally.

When optimal solutions are infeasible, it leads to use

sub-optimal solutions. Both hierarchical options are

based on mathematical programming, queuing theory,

graph theory, and enumeration (solution space and

search).

IV. ANOTHER COMMON CLASSIFICATION OF

DISTRIBUTED SYSTEM SCHEDULING

 First come First Served (FCFS)

It is an abstracted way of organizing and allocating of

resources to jobs over time, it serves as a principle of a

queue processing or demands’ servicing by ordering

that means what comes in first is allocated first, what

comes in next waits until the first is finished.

 Round-robin (RR)

It is a simplest and easy to implement scheduling

algorithm based on time sharing among jobs in equal

slice or quantum focusing on fairness between jobs. It

works in circular queue without priority but it has a

starvation problem. The advantage of RR is that no job

has to wait for another one to be completed as FCFS

and others but it is not a suitable for those jobs that are

largely varies in their size and requirements.

 Priority-based

It is a preemptive based scheduling algorithm. Each

process is assigned a certain level of priority that

corresponds to the relative importance of the event that

it services. The processor is normally allocated to the

highest-priority process among those that are ready to

execute. Higher-priority processes usually preempt

execution of the lower-priority processes. As a job is

waiting, raise its priority so eventually it will have the

maximum priority which is a solution to the problem

of starvation.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 377

 Local Scheduling

In a distributed system, local scheduling means how an

individual workstation should schedule those processes

assigned to it in order to maximize the overall

performance. In a distributed system, the local

scheduler may need global information from other

workstations to achieve the optimal overall

performance of the entire system. There are two local

scheduling techniques. Proportional-sharing scheduling

and predictive scheduling.\

 Proportional-sharing scheduling

Basically priority-based schedulers are difficult to

understand and give more processing time to users

with many jobs, which lead to unfairness among users.

So that Proportional-sharing scheduling is easy to

implement and can solve this problem of allocating

resources to users fairly over time in which the

resource consumption rights of each active process are

proportional to the relative shares that it is allocated.

There are two types:

1. Lottery scheduling

Lottery scheduling is a probabilistic scheduling

algorithm for processes in an operating system which

provides proportional-sharing of resources

management. Processes are each assigned some

number of lottery tickets, and the scheduler draws a

random ticket to select the next process to be executed.

The distribution of tickets need not be uniform;

granting a process more tickets provides it a relative

higher chance of selection. It solves the starvation

problem in which every job gets at least one ticket.

Processor time is proportional to the number of tickets

given to each job. It considers that there could be a

large number of tickets distributed among a large pool

of threads. To have an array of tickets with each ticket

corresponding to a thread may be highly inefficient

[17].

2. Stride scheduling

It is a deterministic scheduling technique that

efficiently supports flexible resource management

abstractions like lottery scheduling. Compared to other

scheduling, stride scheduling achieves significantly

improved accuracy over relative throughput rates, with

significantly lower response time variability. It

implements proportional-share control over processor

time and other resources which is designed for

networks [18]. Fairness can also be guaranteed in

stride scheduling.

 Predictive Scheduling

Predictive scheduling which is adaptive to the

processor load and resource distribution of the

distributed system. It provides intelligence, adaptivity

and proactivity and adapts to new architectures,

algorithms, methods and environmental changes

automatically that are embedded into the system

providing guarantees of service. Predictive scheduling

is very effective in performance and reliability

enhancement, even with the simplest methods, but at

the cost of design complexity and management

overhead.

Other scheduling policies are used either when a

process blocks or at the end of a time slice, which

reduces the performance and substantial drop of time

during scheduling. Predictive scheduling solves this

problem by predicting scheduling decision is necessary

or predicting the parameters needed that are not known

in advance. Based on the collected static information

(machine type, CPU power, etc.) and dynamic

information (memory free space, CPU load, etc.),

predictive scheduling tries to make an educated guess

about the future behavior, such as CPU idle time slot,

which can be used to make scheduling decisions in

advance. Predicting the future performance based on

past information is a common strategy and it can

achieve a satisfactory performance in practical work.

 Coscheduling

Meanwhile, coordinated scheduling of parallel jobs

across the nodes of a multiprocessor (coscheduling) is

also essential in a distributed system. In 1982,

Outsterhout introduced the term “coscheduling” in

which the process working set must be coscheduled or

scheduled for execution simultaneously for the parallel

program to make progress on distinct processors. It can

produce benefits in both system and individual job

efficiency. Without coordinated scheduling, the

processor thrashing may lead to high communication

latencies and consequently degraded overall

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 378

performance. So the success of coscheduling becomes

a more important factor in deciding the performance.

Coscheduling is classified into three types:

1. Explicit coscheduling or gang scheduling

It requires all processing to actually take place at the

same time, and is typically implemented by global

scheduling across all processors. The strategy bypasses

the busy-waiting problem by scheduling all processes

at the same time. It works well for parallel jobs having

a lot of inter-process communications. However it is a

centralized scheduling strategy with a single scheduler

making decisions for all jobs and all workstations. This

centralized nature can easily become the bottleneck

when the load is heavy. Although this scheduler can

achieve high system efficiency on regular parallel

applications which is difficult in selecting alternate

jobs to run when processes block, requiring

simultaneous multi-context switches across the nodes.

To achieve good performance requires long scheduling

quanta, which can interfere with interactive response,

making them a less attractive choice for use in a

distributed system. These limitations motivate the

integrated approaches.

2. Local Coscheduling

It allows individual processors to schedule the

processing independently. It’s ease of construct but the

performance of communicating jobs degrades

significantly because scheduling is not coordinated

across processors.

3. Dynamic or implicit Coscheduling

It is a form of coscheduling where individual

processors can still schedule processing independently,

but they make scheduling decisions in cooperation

with other processors. It is for dynamically

coordinating the time-sharing of communicating

processes across distributed systems. However,

implementations of explicit coscheduling often suffer

from multiple failure points, high context-switch

overheads, and poor interaction with client-server,

interactive, and I/O-intensive jobs. But implicit

coscheduling minimizes the communication waiting

time of parallel processes by identifying the processes

through gathering and analyzing implicit runtime

information or communication events. Unfortunately

it does not provide guarantee the performance of local

and parallel jobs when increasing the number of

parallel jobs compete from each other.

V. MARKOV CHAIN MODEL

This is a probabilistic-based stochastic model which

will be applied to classify different kinds of distributed

system scheduling schemes which are based on the

following two concepts:

 Transition of the next state depends on the current

state.

 A suitable estimation of the transition probabilities

between states.

The stochastic process {Xn, n=0, 1, 2…} is called

Markov chain, if, for j, k,

 j1,…jn-1 € N (or any subset of I), and

P [Xn = k / Xn-1 = j , Xn-2 = j1 ,….,X0 = jn-1] = P [Xn = k

/ Xn-1 = j] = pjk

The transition probabilities pjk satisfy

1
k

jkp

pjk 0 for all j.

These probabilities may be written in the matrix form

P referred as the transition probability matrix of the

Markov chain. The P is a stochastic matrix, i.e. a

square matrix with non–negative elements and unit

row sums.

VI. CONCLUSION

This paper covers different types of possible

classification available in literature. A good scheduling

approach requires a good balance between achieving

fairness across users optimizing throughput and other

system measures in a distributed system. The system

must often choose between balancing fairness and

balancing load when placing jobs among different

processors as well as reducing the scheduling overhead

https://en.wikipedia.org/wiki/Gang_scheduling

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 379

by overlapping scheduling decisions with other

operations. Distributed systems have different

scheduling algorithms but all algorithms have their

own deficiency and restrictions. In this research survey

paper proposes to study probabilistic-based stochastic

Markov chain model to improve the performance of

different scheduling schemes. This research will be

proposed new approaches for scheduling algorithm

which helps to improve the efficiency of systems using

model-based study in which assuming the random

movement of schedulers over various processes with

their processors and the various queues. The proposed

work will be useful for the distributed system designers

by incorporating some new schemes in currently

available scheduling algorithms. It is also possible that

some algorithms can be merged to get the optimized

performance of distributed system where the

performance of different scheduling schemes will be

analyzed under probability based models. Simulation

study will support this proposed discussion for setting

up approaches and trend. After surveying and

reviewing the available literature that explored some

important issues and challenges associated with

scheduling algorithms. This research work will be

helpful to measures scheduler’s performance in

distributed systems.

VII. REFERENCES

[1]. C. Arpaci-Dusseau, “Implicit Coscheduling:

Coordinated Scheduling with Implicit Information in

Distributed Systems,” ACM Trans. on Computer

Systems, Vol.19, No. 3, pp.283-331, Aug. 2001.

[2]. P. Barcaccia, M.A. Bonuccelli, and M. Di Ianni,

“Complexity of Minimum Length Scheduling for

Precedence Constrained messages in Distributed

Systems,” IEEE Trans. Parallel and Distributed

Systems, Vol.11, No.10, pp. 1090–1102, Oct. 2000.

[3]. Lampson, M. Abadi, M. Burrows, and E. Wobber,

“Authentication in distributed systems: Theory and

practice,” ACM Trans. Computer Systems, Vol.10,

No.4, pp 265-310, Nov. 1992.

[4]. V. M. Lo, “Heuristic Algorithms for Task

Assignment in Distributed Systems,” IEEE Trans.

Computers, Vol. 37, No.11, pp. 1384-1397, 1988.

[5]. F. Petrini and W.-C. Feng, “Scheduling with Global

Information in Distributed Systems,” Proc. 20th Int’l

Conf. Distributed Computing Systems, pp. 225 – 232,

April 2000.

[6]. S. Srinivasn and N. K. Jha, “Safty and Reliability

Driven Task Allocation in Distributed Systems,”

IEEE Trans. Parallel and Distributed Systems,

Vol.10, No.3, pp. 238-251, Mar. 1999.

[7]. H. Topcuoglu, S. Hariri, and M.-Y. Wu,

“Performance-effective and Low-complexity Task

Scheduling for Heterogeneous Computing,” IEEE

Trans. Parallel and Distributed Sys., Vol.13, No.3,

Mar. 2002.

[8]. International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2,

Issue-3, July 2012, Overview of Scheduling Tasks in

Distributed Computing Systems, O. M. Elzeki, M. Z.

Rashad, M. A. Elsoud

[9]. Ramya S Gowda, “Qualitative Study on the efficiency

of Load balancing algorithms in Cloud Environment,”

IOSR Journal of Computer Engineering (IOSR-JCE),

Vol. 16, No. 6, Ver. VIII, pp 09-12, Nov – Dec. 2014.

[10]. Thomas l. Casavant and jon g. Kuhl, “A Taxonomy of

Scheduling in General-Purpose Distributed

Computing Systems, IEEE Transactions On Software

Engineering, Vol. 14, No. 2, pp 141-154,February

1988.

[11]. Medhi, J. Stochastic processes, Ed. 4, Wiley Limited

(Fourth Reprint), New Delhi. 1991.

[12]. Silberschatz, A., Galvin, P. and Gagne, G. Operating

System Concepts, International Student Version,

Ed.8, India, John Wiley and Sons, Inc. 2010.

[13]. A. S. Tanenbaum and M. V. Steen, Distributed

Systems: Principles and Paradigms, Low price

edition, Pearson Prentice Hall.

[14]. Chapin, Steven J. and Weissman, Jon B, "Distributed

and Multiprocessor Scheduling" (2002). Electrical

Engineering and Computer Science. Paper 40.

[15]. X. Evers, Thesis on “A literature study on scheduling

in Distributed system”, submitted on Department of

Mathematics and computing operating system and

distributed systems group Delft University of

Technology, The Netherlands, Oct.1992

[16]. Dongning Liang, Pei-Jung Ho, Bao Liu, “Scheduling

in Distributed Systems”.

[17]. Waldspurger, C.A., Weihl, W.E. (1994). Lottery

Scheduling: Flexible Proportional-Share Resource

Management. First USENIX Symposium on

Operating System Design and Implementation.

[18]. Waldspurger, C.A., Weihl, W.E. (1995). Stride

Scheduling: Deterministic Proportional-Share

Resource Management. Technical Report

MIT/LCS/TM-528, Massachusetts Institute of

Technology, MIT Laboratory for Computer Science.

