
CSEIT172574 | Received : 12 Sep 2017 | Accepted : 24 Sep 2017 | September-October-2017 [(2)5: 380-385]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

380

Sorted Positional Indexing Based Computation for Large Data
K. S. Vijaya Lakshmi*1, K. Gayatri2

*1Assistant Professor, Computer Science Department, VR Siddhartha College, K. S. Vijaya Lakshmi, Vijayawada, India
2,1Computer Science Department, VR Siddhartha College, Student, Vijayawada, India

ABSTRACT

The performance of Hadoop Map Reduce mainly depends on its configuration parameters. Tuning the job

configuration parameters is an effective way to improve performance so that we can reduce the execution time and

the disk utilization. The performance of tuning is mainly based on CPU usage, disk I/O rate, memory usage,

network traffic components. In this work we are discussing about the tuning techniques to upgrade the execution of

Map Reduce occupations. It is found that the current calculations can't prepare the skyline on huge information

productively. So, here we are using a novel skyline algorithm Skyline Sorted Positional Index List (SSPL) on huge

data like social data. SSPL utilizes sorted positional index lists which require low space overhead to reduce I/O cost

significantly. The experimental results on synthetic and real data sets show that SSPL has a significant advantage

over the existing skyline algorithms.

Keywords: Big data, Hadoop Map reduce, Skyline, SSPL

I. INTRODUCTION

A huge collection of data is called as Big data. The

term big data has been a popular topic recently in

practice, academy, and government to reflect the needs

of using the huge data. Big data refer to data sets which

are so large and complex that is beyond the ability of

typical software tools to capture, store, manage, and

analyse it within a tolerable elapsed time [1]. The

purpose of collecting big data is similar to tradition

data mining to solve the key problems of society,

business and science.

The generated data is not only by organizations and

governments actually, each and every one of us now is

a data generator. We produce data using our mobile

phones, social networks interactions, GPS, etc. Most of

such data, however, is not structured in a way so as to

stored and/or processed in traditional DBMS. The

collection of data over a time frame that is so complex

and difficult to process and manage using conventional

database management tools.

 Semi-Structured Data - such as XML formatted

data.

 Unstructured Data – These data can be generated

by humans such as social media, discussion forums

and customer feedback, comments, emails etc. or

may be generated by machine such as online

transactional, satellite and environmental data

collected through various sensors, web-logs, call

records etc.

 Structured Data - generated from various

researches efforts, CRM (Customer Relationship

Management) and other such traditional databases.

However, the massive volume of data makes it very

difficult to perform effective analysis using the existing

traditional techniques [2]. In addition, other

characteristics like velocity, variety, variability, value

and complexity put forward the big data issue more

challenge [4]. To deal with the complexity of big data,

many information technologies and software have been

proposed, e.g. Hadoop, NoSQL, and cloud computing.

These solutions are usually technological orientation

rather from the perspective of theory. However, there

are still many challenges to uncover the nugget in

theory. As shown from the results of a 2012 survey the

top four big data challenges are data integration, data

volume, skill availability, and solution cost. Among

these issues, data integration and skill availability

cannot simply be solved by information technology.

The problem of data integration comes from the

property of variety in big data. With such variety, a

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 381

challenge is how to combine the distributed and

massive meaningful features for analysis.

Although it is convenient to combine all features across

tables, it may suffer the curse of dimensionality and

problems of feature selection. On the other hand, the

problem of skills availability is the fact that the

traditional data mining [3] methods cannot deal with

big data due to these data are stored distributed. In the

field of machine learning, high dimensional data

analysis and Distributed Data Mining (DDM)

algorithms are newly developing topics and received

much attention recently. Although these issues are

clearly related to big data, they are not well-integrated

and should be overcome appropriately. The value of

big data is indubitable. However, how to transform big

data to big value is the main issue. Although there are

plenty of tools and architectures, such as Hadoop, Map

Reduce, NoSQL database etc., to search, manage, store,

and control huge volume of data, the analysis of big

data can truly derive the nugget of big data.

We propose to develop a Skyline (Horizon) with sorted

positional index lists to return results quickly with

unique attribute presentation. The criterion uses the

pre-constructed data-structures which need low area

expense to reduce I/O price considerably. Procedure of

Skyline algorithm explained next sections with feasible

data storage and processing So here we are using an

algorithm which can handle the both consistent and

inconsistent data. And can improve the performance

and reduce the CPU usage, disk I/O rate also.

II. METHODS AND MATERIAL

A. Skyline Based Indexing And Querying

In this section, we present and develop Skyline

indexing method to define efficient computation in

multi job tracking in recent contribution in different

attribute parameters. As discussed in related work of

TO and PO attribute domain data representation using

ZB-tree data structure, in this section we define Skyline

with sorting using ZB-tree procedure and nested code

implementation in horizontal and vertical data

presentations.

ZB-tree: A ZB-tree is a version of B+-tree using Z-

addresses as important factors. The information factors

are saved in the leaves places categorized in non-

dropping demand of their Z-addresses. Fig. 1(d) talks

to the ZB-tree consisting on the dataset gave up Fig.

1(a), where the littlest and most impressive possible

leaves hub prospective are 1 and 3, independently.

Each inward hub get to (comparing to some kid hub N)

helps you to save a interval, intended by a few Z-

addresses, along with a section of the Z-order

perspective (called the Z-area) guaranteeing all the

information views the leaves places in the catalog sub

shrub targeted at N. Especially, a interval is shown by

(min pt; max pt), where min pt and max pt organize,

independently, to the most decreased and most

impressive possible Z-locations of the tiniest

rectangular shape area, known as the RZ-locale, that

clos the Z-area. A situation of RZ-district is confirmed

by the rectangular shape in Fig. 1(c) where three

information determines A, B, and C are limited; the

min pt and max pt revealed are the most decreased and

most raised possible Z-locations of the fitted

rectangular shape RZ-district.

Figure 1 : Z-order internet indexing with ZB-tree data

representation.

The min pt (resp., max pt) of a RZ-locale is instantly

developed by linking 0s (resp., 1s) to the most popular

prefix of the Z-locations of the two endpoints of the

evaluating perspective place. The ZB-tree process uses

an in-circle ZB-tree (named SRC) and an in-memory

ZB-tree (named SL) to catalog the information

numbers and calculated skyline components,

independently. Horizon factors are realized by

conjuring ZSearch(SRC) to recursively discover SRC

top to base first strategy to discover areas or

information views that are not believed management by

the existing skyline determines SL. Given two RZ-

locales R and R 0, the ZB-tree uses the associated with

three features of RZ-districts to improve occurrence

examinations: (P1) If minpt of R 0 is believed

management by maxpt of R, then the whole R 0 is

believed management by R. (P2) If minpt of R 0 is not

believed management by maxpt of R and maxpt of R 0

is believed management by minpt of R, then some

determine R 0 could be believed management by R.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 382

(P3) If the maxpt of R 0 is not believed management by

the min pt of R, then no purpose in R 0 can be believed

management by any consider R. For each visited record

get to (either inner or leaves section) E, Z-Search

creates Control (SM,D) requirements (appeared in

Appendix A) to look at whether the pertaining RZ-area

or information varying of E can be believed

management by the skyline determines SM.

Dominate(SM,D) changes SL in an expansiveness first

way and performs occurrence evaluation between each

visited get to and E depending upon features P1 to P3.

Particularly, if E is an fitted get to and the assumption

is management by some skyline consider because of P1,

then the look for of the record sub shrub targeted at the

hub pertaining to E is trimmed.

Procedure of the Skyline ZB-tree implementation with

different sorting attributes shown in following

algorithm.

Algorithm 1. Procedure for the skyline ZB –tree for

indexing

Input: Load data sets D = {d1, d2, …,dn} with

attributes A={a1,a2,a3,.......an}, Set Index I=0,

Boolean Retrieval Sequence = true

Output: Perfect attribute sorted indexing.

Step 1: Load data D with attributes A with

different parameters.

Step 2: Perform hashing with respect to pruning

operations

Step 3: Read each attribute positional index pi0,

pi1,... pin, every time add index to the array list

using Z-order indexing i.e. last index +1

Step 4: Perform earlyPrun() to main hash table z-

order indexing to maintain positional index

occurrence in attributes.

Step 5: Perform latePrun() to arrange sequential

tuple maintenance to array list.

Step 6: Formulate to increase the attributes with

their indexing either ascending & descending

order with different formations.

Step 7: Sort the records based on their indexing

with different attributes.

This procedure is used to arrange sequential

presentation of data sets with different attributes to

arrange sorted indexing for all tuples in dataset. By

using ZB-tree in horizon to process individual records

into either ascending or descending order presentations.

Code implementation procedure for skyline ZB-tree

formulates in nested code implementation.

1.1 Nested Code Schema Implementation:

Around there, we display a novel enhancement

organize, known as resolved progression (or NE, for

short), for progression requirements in PO websites.

The progression program's created to be responsive to

Z-arrange publishing to such a degree that when the

properly secured requirements are documented with a

ZB-tree, the two appropriate features of monotonicity

and bunching of ZB-tree are kept up. ZB-tree, the two

appropriate features of monotonicity and bunching of

ZB-tree are kept up. We indicate a limited buy by an

knowledgeable chart G = (V;E), where V and E

indicate, independently, the agreement of vertices and

ends in G with the end objective that given v; v 0 2 V ,

v guidelines v 0 iff there is a trained course in G from v

to v 0. Given a hub v 2 V, we implement parent(v)

(resp., child(v)) to display the agreement of parent or

guardian (resp., tyke) locations of v in G. A hub v in G

is considered as a acceptable hub if parent(v) = ;; and it

is considered as a biggest hub if child(v) = ;. We

implement min(G) and max(G) to illustrate,

independently, the agreement of little locations and

biggest locations of G as confirmed in figure 5.

Figure 2: Partial order and totally order data

presentation with different attributes.

By using ZB-tree, Stacked code development

procedures in total purchasing and limited purchasing

with different information dimensionality managing

with parameter series performance with successive

information demonstration with unique information

demonstration with different factors in reliable great

amount information managing with information

sources. In next section we give relative research

between HDFS & Map Reduce frameworks with

suggested listing method in z-order series presentation.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 383

III. RESULTS AND DISCUSSION

In this section, we assess the performance of our

suggested approach with regards to allocated file

system information discussing in lots of information

systems in real-time information positioning with

different factors. For that we need to use Coffee system

to draw out information sets from different sources

available in openly available and reliable databases

links. Using Net legumes design name node

information node reflection using some collections and

sessions available in program development interface

with different structures. To perform this program we

need to keep 8 GB RAM process to spend several job

monitoring to different server handling. First, we

installation Hadoop atmosphere after that we develop

name node options with IP deal with and slot variety

and then information node started with name node IP

deal with and slot variety, after that name node give

information to information node based on Hadoop

group set up options with different factors approved by

features.

Table 1 shows the Hadoop structure gives simulator

factors to set up Hadoop atmosphere.

Table 1: Simulation Parameter values with detailed

description.

Simulation

Parameter

Used values

presentation

Synthetic Data

sets

>100 MB

Record

Length

135 bits

Attributes Based on hash

threshold

(Max...62)

Hash-Key

Value

5 bits

By using above simulator parameter, we create efficient

style of suggested strategy with possible functions. To

look at the efficiency of our suggested online listing

and querying, we perform set of tests to evaluate our

suggested strategy with HDFS system structure.

To look at the effectiveness of our suggested placed

development plan, we furthermore showed two

versions of ZB-tree that rely on using different

techniques to copyist PO websites. The primary

difference, TSS+ZB, combines the TSS progression

organize with the ZB-tree technique. Every PO part

confidence vp of a knowledge determine is properly

secured a bit sequence depending upon its ordinal

confidence vt in a topological organizing of the PO

department requirements. The development of vt in the

introduction of the information point's Z-deliver is

essential to make sure ZB-tree's monotonicity residing

agreement. Every leaves hub accessibility in TSS+ZB

stores a information determine p together with the time

interval set impact of each of p's PO consist of

requirements. In each inward hub accessibility of

TSS+ZB, beides sparing the minpt and maxpt of the

pertaining RZ-district (like what is done in ZB-tree),

for every PO consist of An, a combined interval set for

An is saved which is the company of the temporary

areas for emphasize An of the properly secured

information elements. In TSS+ZB, location centered

ubiquity dissect is used as requires after: if (1) the Z-

deal with of a powered skyline consider pi guidelines

minpt of an internal hub get to ej , and (2) the time

interval set of pi subsumes the temporary agreement of

ej w.r.t. each PO calculating, then the variety talked to

by ej is guarded with pi and is reduce from issue.

Table 4.2 shows the data formulation in terms of CPU

utilization in data processing on both name & data node

configurations in data processing.

Table 2: CPU utilization in data processing.

Number of

Attributes

Proposed

Approach

HDFS &

MR

1 0.674 0.72

2 0.774 0.81

3 0.845 0.865

4 0.85 0.899

5 0.906 0.921

Performance evaluation of CPU usage in huge data

processing may give better computational results as

shown in figure 6.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 384

Figure 3: CPU utilization with respect to number of

attributes increased.

Table 3 shows the data formulation in terms of memory

utilization in data processing on both name & data node

configurations in data processing.

Table 3: Memory utilization results in data processing

with respect to attributes

No.of

attributes

Proposed

Approach

HDFS &

MR

1 0.680 0.735

2 0.780 0.818

3 0.860 0.875

4 0.865 0.900

5 0.915 0.935

Memory utilization with respect to increase attributes

in recent application running with parallel processing in

different data items as shown in figure 3.

Figure 5: Memory utilization results in both proposed

and HDFS systems,

Fig 5 implements and show execution time

implementation parameters with different attributes

presentation in different streams in sequential execution

of data node job processing.

Figure 4: Time efficiency results with respect job

evaluation in different attributes.

As discussed in previous sections Internet based

indexing gives better results in application process with

respect to data node implementation and name node

implementation in real time data processing.

.

IV.CONCLUSION

In this work, we are considering the Hadoop

framework arrangement parameters that are enhancing

the general Hadoop framework execution and also

discussed about Hadoop design that is to be

transformed from its default to application particular

configuration. This work proposes a novel SSPL

algorithm, which uses sorted positional record

arrangements of low space overhead, to decrease the

I/O cost essentially. SSPL comprises of two stages. In

stage 1, it improves the sorted positional records

determined by horizon criteria in a round-robin model

until there is a competitor positional file found in the

greater part of the included records. In stage 2, SSPL

plays out a successive and specific output on the table

by the hopeful positional lists got in stage 1. Social data

sets are useful to extract data in reliable parallel data

distribution based on features. The experimental results

engineered and genuine information sets, demonstrate

that SSPL has striking a favorable position over the

current “Map Reduce Structure Applications”. Our trial

outcome shows the type of our suggested performance

for various configurations in information arrangements

and processing of artificial information assessment.

Our strategy gives 95% of accurate outcome when

compared to traditional approaches.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 385

V. REFERENCES

[1]. J. J. Huang, "Two Steps Genetic Programming

for Big Data - Perspective of Distributed and

High-Dimensional Data," IEEE International

Congress on Bi Data, New York, NY, pp. 753-

756, 2015.

[2]. Avita Katal Mohammad Wazid R H Goudar, Big

data: Issues, challenges, tools and Good

practices. In Contemporary Computing (IC3),

Sixth International Conference on, 404-409,

2013.

[3]. X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data

Mining with Big Data”, IEEE Transactions on

Knowledge and Data Engineering, 26(1) 97-107,

2014.

[4]. V. Kalavri and V. Vlassov, "MapReduce:

Limitations, Optimizations and Open Issues,"

12th IEEE International Conference on Trust,

Security and Privacy in Computing and

Communications, Melbourne, VIC, pp. 1031-

1038, 2013.

[5]. A. Saboori, G. Jiang, and H. Chen, "Autotuning

configurations in distributed systems for

performance improvements using evolutionary

strategies", Proc. 28th IEEE International

Conference on Distributed Computing Systems

(ICDCS '08), Dec. 2008, pp.769-776.

