
CSEIT1726117 | Received : 25 Nov 2017 | Accepted : 21  Dec 2017 | November-December-2017 [(2)6: 952-956] 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307 

 

952 

Robust Face Recognition System using Non Additive Entropy 

with Kernel Entropy Component Analysis  
Aruna Bhat 

Research Scholar, Department of Electrical Engineering, IIT Delhi, India 

 

 

ABSTRACT 
 

A technique for illumination invariant face recognition using Gaussian non-additive entropy based Kernel Entropy 

Component Analysis is proposed. The approach is combined with Gabor Wavelet Transformation and Discrete 

Cosine Transform to achieve illumination invariance along with expression and pose invariance as well, thereby 

leading us towards the design of a universal robust face recognition system.  
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I. INTRODUCTION 

 
Face recognition is the least intrusive and unobtrusively 

fastest biometric technology. The motivation of using 

Face as a modality for recognition lies in discreetness 

and non-intrusiveness. There is no need to ask people 

to place their fingers on a scanner or to accurately 

adjust the position of their eyes against a reader. 

Instead, a face recognition system can unobtrusively 

recognize people by their face when they enter a 

particular area. With no delay involved in carrying out 

this process, the subjects are also completely unaware 

of being observed. Unlike other biometric methods, 

there is no issue of people feeling under surveillance or 

worrying that their privacy has been invaded. 

There have been various face recognition methods 

proposed in the past but nearly all suffer from the 

practical aspect of changes in the face, which to a 

certain extent are unavoidable. Most of the existing 

face recognition systems demand precise alignment and 

correspondence between the testing and the training 

data sets. This restriction makes the system unusable in 

practice. The changes in the face image due to 

variations in pose, illumination, expressions etc. make 

such strict face recognition systems futile in real world 

applications. The results are even more deplorable if 

the variations are collectively present. However there is 

no escape to such variations in real world and there is a 

need to design strong reliable face recognition 

methods. 

In order to evaluate the usability of the Kernel Entropy 

Component Analysis (KECA) [1] based on Gaussian 

non-additive entropy for dealing with various changes 

in face due to variations in illumination, pose and 

expressions, the approach is combined with Gabor 

Wavelet Transformation (GWT) [2] for achieving 

illumination invariance with some degree of expression 

and pose invariance, and Discrete Cosine Transform 

(DCT) [3] for significant robustness towards 

illumination changes in the face. 

The methodology is mainly centered on KECA with 

the conventionally used Renyi entropy [4] being 

replaced with the Gaussian non-additive entropy 

measure [5], useful for the representation of 

information content in the non-extensive systems 

containing some degree of regularity or correlation 

which makes it a better option than Renyi entropy in 

KECA.  

The intent is to obtain the best principal component 

vectors which can be used for pattern projection to a 

lower dimensional space. The method extends from the 

notion of selecting the principal component vectors 

based on entropy information rather than being based 

only on the magnitude of Eigen values. 
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Discrete Cosine Transform is known to aid in 

increasing the robustness against variations in 

illumination. The entropy measures are applied on the 

Discrete Cosine Transform coefficients to extract the 

maximum entropy preserving pixels in order to yield a 

feature vector with the most informative features of a 

face. We apply the Kernel Entropy Component 

Analysis over the coefficients of Discrete Cosine 

Transform which have highest contribution towards the 

Gaussian non-additive entropy estimate. It produces 

only those real Kernel Entropy Component Analysis 

Eigen vectors which correspond to the Eigen values 

with high positive entropy contribution. 

Likewise Gabor Wavelet Transformation is applied 

over the images from which the most crucial 

discriminative facial features characterized by spatial 

frequency, spatial locality and orientation selectivity 

are derived. Here also, we apply Kernel Entropy 

Component Analysis based on the Gaussian non-

additive entropy on the computed feature vectors of 

face images so as to obtain only those real KECA 

Eigen vectors which correspond to the Eigen values 

with high positive entropy contribution. Finally, these 

real KECA features will be used for image 

classification.  

The proposed methodology produces a reasonable 

increase in the resilience of the face recognition system 

against the changes in facial expression, pose and 

illumination. It is not only efficient and reliable but 

also computationally fast and simple to implement. 

The rest of this paper is organized as follows: Section 2 

provides a detailed description of the proposed 

methodology for robust face recognition based on 

Kernel Entropy Component Analysis using a non-

additive entropy measure. Experimental results have 

been elaborated in Section 3 followed by Section 4 

which provides the conclusion. 

II. METHODOLOGY 
 

A major nonlinear spectral data transformation method 

for face recognition is Kernel PCA (KPCA) [6]. KPCA 

performs traditional PCA in a kernel feature space, 

which is nonlinearly related to the input space. A 

positive semi definite kernel function computes inner 

products in the kernel feature space yielding an inner 

product matrix called a kernel matrix. Performing 

metric multi-dimensional scaling on the kernel matrix, 

based on the best Eigen values of the matrix provides 

the KPCA data transformation.  

Kernel Entropy Component Analysis (KECA) is 

another spectral data transformation method extending 

from the concept of KPCA. It is useful as an alternative 

to KPCA in performing pattern de-noising. KECA is 

directly related to the Renyi entropy of the input space 

data set through a kernel based Renyi entropy estimate. 

The same is expressed through projections onto the 

principal axes of the feature space. The transformation 

done by KECA is based on the highest entropy 

preserving axes and reveals the structure related to the 

Renyi entropy of the input space data set.  

In order to develop KECA, an estimator of the Renyi 

entropy may be expressed in terms of the spectral 

properties of a kernel matrix through a Parzen window 

for density estimation.  

Let Φ be a non-linear mapping between the input space 

and the feature space. Also, let SK be a subspace 

spanned by all those "K" Kernel Principal Component 

Analysis axes which contribute most to the Renyi 

entropy estimate of the data. Then, K dimensional data 

transformation is performed by projecting Φ onto SK. 

For nonlinear mapping, any one of the existing classes 

of kernel functions like polynomial kernels, radial basis 

function kernels, sigmoid kernels or arc cosine kernels 

may be used.  

Features characterized by spatial frequency, spatial 

locality and orientation are computed using Gabor 

Wavelet Transformation. Gabor wavelets portray 

strong characteristics of spatial locality and orientation 

selectivity. They are optimally localized in the domains 

of space and frequency. Basically, using the Gabor 

wavelets, an image can be represented as its 

convolution with a family of Gabor kernels.  

To extract the most discriminative features, the 

convolution outputs of the image I with all the Gabor 

kernels are determined. These outputs have the 

complex values in them. Therefore, every pixel value 

of the convolution output is replaced by its modulus.  

This yields an image that can be represented as AI, for 

I=1,2,…,K.  Here K denotes the total number of Gabor 

kernels. Subsequently, a division of every such image 

AI is done into various blocks. Each block is of size P × 

P pixels (appropriately chosen) from which only those 
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pixels are considered whose values are greater than the 

overall mean of the image. They are stored in a column 

vector representing the most discriminating feature 

vector. The process is repeated for all the convolution 

outputs to obtain a set of feature vectors.  

To begin with, in each image AI, the overall mean 

image AM is calculated. Thereafter, for each block, we 

begin with finding its maximum value MB which is to 

be compared with AM.  

If MB>= AM then feature point is MB, else if MB< AM 

then feature point is AM.  

Likewise, the feature points so determined are stored in 

the column vector. Finally all such column vectors are 

concatenated into a single feature vector which holds 

the most important discriminating features from all the 

Gabor convolution outputs.  

Illumination Normalization can be achieved in a variety 

of ways. One of the most reliable methods is to 

compute the logarithmic transformation of the grey 

level distribution of an image I(x, y). Further the 

variance equalization enables us to increase the local 

contrast of the face in the image. As the illumination 

variations are expected to be in the low frequency 

components of a facial image, they can be removed 

simply by setting the low frequency DCT coefficients 

to zero.  

The image I(x,y) is divided into blocks of size P×P 

pixels. DCT is performed over each of these P × P 

blocks of image.  

A compression is performed on each of the DCT block 

using the standard quantization matrix which is 

followed by computation of the entropy estimate for 

each pixel of the DCT transformed image. Only that 

pixel which has the highest entropy estimate for the 

block is chosen and stored as the entropy based feature 

points into a column vector. Finally each of these 

feature vectors is concatenated to form a feature vector 

which contains the maximum amount of information of 

the face image. The final high entropy content feature 

vector is generated by accumulation of the elements 

column wise to a single vector for every individual face.  

Unlike the traditional component analysis techniques 

where the face images are the directly input for face 

recognition, we now use the following two features 

vectors as the input to Kernel Entropy Component 

Analysis: 

 

1. A Gaussian non-additive entropy based Discrete 

Cosine Transform feature vector. 

2. A feature vector containing the features extracted 

from the Gabor transformed images by applying 

GWT.  

 

The above two feature vectors are used as input in 

KECA to derive the real KECA features.  

 

The major novelty in this approach lies in the use of the 

Gaussian non-additive entropy measure instead of the 

conventional Renyi entropy in KECA as well as in 

computing the DCT based entropy feature vector.  

The new entropy measure is estimated on similar lines 

by using Parzen window estimator.  

The projection of Φ onto the i
th

 principle axes Si is 

determined such that only that axis Si for which the 

Eigen value is greater than zero and Eigen vector is 

non-zero, contribute towards the entropy estimate. 

Evidently the principle axes contributing towards the 

Gaussian non-additive entropy estimate are the most 

crucial informative sources of the details about the 

shape of the probability density function generating the 

input space data set.  

Suppose K be the extracted most informative feature 

vector with its image in the feature space represented as 

Φ(K), the KECA feature E of K can be expressed as:  

E = PSiΦ(K)            (1) 

 

where, PSi signify the principle axes.  

In order to derive real KECA features only those 

KECA Eigen vectors are considered that are associated 

with nonzero positive Eigen values and sum of the 

components of the corresponding Eigen vectors is not 

equal to zero.  

When a face image is presented to GWT-DCT based 

KECA, the low dimension discriminative GWT-DCT 

feature vectors of the image are first calculated and out 

of these the most important discriminative feature 

vector is used as the input data in order to derive the 

Gaussian non-additive entropy based KECA features. 
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The optimal features obtained from (1) are the robust 

representative of the images. 

Each feature in the test feature vector FTest is compared 

with the features in every training feature vector FTrain. 

The maximum number of matches between the test and 

the training feature vectors leads to the possible result, 

which is however, first checked for being a false 

positive. 

The minimum distance between the optimal feature 

vectors of the images are used for image classification. 

The classifier then applies, the nearest neighbour (to 

the mean) rule for classification using the similarity 

(distance) measure. 

Feature matching is done using NNS (Nearest 

Neighbour Search). For a given set S of points in a d-

dimensional metric space D and a query point q ∈ D, 

we find the nearest point in S to q by measuring the 

Euclidean distance in between them.  

d(u, v) = ( ∑i (ui - vi)²)0.5          

                    (2) 

1. Create a match vector MTrain for every training 

image to hold the number of matches between the 

training and test image features.  

2. For every feature in the test feature vector FTest of 

the test image, its Euclidean distance to all the 

features in every training feature vector FTrain of the 

training image is computed.  

3. The feature in each training feature vector FTrain 

with the least Euclidean distance to the current test 

feature in FTest is marked as the best match for it 

from FTrain. 

4. The Euclidean distances of the best matches from 

all the training feature vectors are compared and 

the one with the least Euclidean distance is decided 

as the final match to the current test feature in FTest. 

Update the corresponding training match vector 

MTrain. 

5. Find the NNDR (Nearest Neighbour Distance 

Ratio) by comparing the distance to the best (d1) 

and the second best (d2) matching feature. If the 

ratio between the both is above a threshold, then 

reject it as a false match. 

NNDR = d1/d2     (3) 

6. If NNDR > 0.8, reject as false positive 

7. Steps 2-5 are repeated for all the features in FTest. 

8. The training image with the matching vector MTrain 

having the maximum number of matches is 

identified as the resultant best match to the test 

image. 

 

To find a match for a test subject in the database 

therefore needs identifying the maximum number of 

nearest neighbours in the vicinity of the test sample. 

The subject yielding maximum such values is decided 

as the best match for the test image.  

III. EXPERIMENTAL RESULTS 
 

The accuracy of the proposed technique has been 

ascertained for PIE (Pose, Illumination, and 

Expression) using standard databases [7] – [11].  

 

Figure 1 : ROC for Recognition Rate in terms of 

Genuine Acceptance Rate (GAR %) 

 

Figure 2 : Recognition Accuracy with respect to 

number of training samples per subject 
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As we can see, even the degree of training effort 

required by the proposed methodology is significantly 

lower.  

IV. CONCLUSIONS  
 

An attempt is made to design a universal robust face 

recognition methodology which is invariant to changes 

in pose, illumination and expressions as well. To 

address it, we have proposed a design using Kernel 

Entropy Component Analysis based on Gaussian non-

additive entropy measure. We have used Gabor 

Wavelet Transformation for achieving illumination 

invariance with some degree of expression and pose 

invariance, and Discrete Cosine Transform for 

significant robustness towards illumination changes in 

the face. The methodology not only yields high success 

rate due to discriminatory power of the used entropy 

measure and the Inner Product Classifier, but is also 

computationally efficient as a common solution to 

pose, illumination and expression variations. Using 

NNS, each fiducial point in the test feature vector is 

compared with the fiducial points in every training 

feature vector. The maximum number of matches 

between the test and the training feature vectors leads 

to a possible match. 
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