
CSEIT1726219 | Received : 20 Nov 2017 | Accepted : 15 Dec 2017 | November-December-2017 [(2)6: 815-819]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

815

Covering All White Box Tests Using Basis Path Test
Dr. Ajay D. Shinde

Associate Professor, Department of Computer Studies, Chhatrapati Shahu Institute of Business Education and

Research, Kolhapur, Maharashtra, India

ABSTRACT

Testing is process of executing a program with an intention to find out a yet undiscovered error. During software

testing the aim should be to find out maximum number of error before release of software. This is possible only

when each and every statement written in a program is executed at least once. The program structure is formed with

control structures sequential, selection and iteration, how these statements are written defines the program structure.

This paper presents use of basis path testing as a base for program structure testing; also it ensures that each and

every statement will be executed at least once.

Keywords : Software Testing, White Box Testing, Basis Path Testing, Program Structure Testing, Testing

techniques.

I. INTRODUCTION

Software testing is the procedure of executing a

program or system with the intent of finding faults [5].

It is measured to be labor intensive and expensive,

which accounts for > 50 % of the total cost of software

development [6]. To test the software one should have

knowledge about both the structure and functionality of

the software. The technique based on functionality is

known as black box testing whereas technique based on

structure is known as white box testing. The white box

testing technique is also known as [8]

 Glass box testing

 Clear box testing

 Open box testing

 Transparent box testing

 Structural testing

 Logic driven testing

 Design based testing

It includes various techniques such as basis path testing,

Loop testing, Condition testing and Data flow testing.

Here primary objective is to make sure that each

statement is written in correct manner. The purpose of

each technique is different, Basis path testing ensures

that control flows correctly within the program, loop

testing ensures that each loop is executed correctly

within its bounds, condition testing ensures that each

condition written contains correct expressions,

relational and logical operators and brackets are placed

correctly, Data flow testing ensures that correct data

flows from one statement in a program to another

statement in the same program. Now the question is, do

the tester need to apply all white box testing techniques

to the same program?. The answer for this question is

NO, we don’t need to apply all the techniques in fact

only one technique is sufficient for all and it is basis

path testing. In [10] Theresa Hunt has explained What

is Basis Path Testing? According to [9] Basis path

testing is a hybrid between path testing and branch

testing:

Path Testing: Testing designed to execute all or

selected paths through a computer program [IEEE610]

Branch Testing: Testing designed to execute each

outcome of each decision point in a computer program

[IEEE610]

Basis Path Testing: Testing that fulfills the

requirements of branch testing & also tests all of the

independent paths that could be used to construct any

arbitrary path through the computer program [based on

NIST]. Not every technique is full proof it will have

certain advantages and disadvantages so is the white

box.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 816

There are certain advantages and disadvantages for

white box testing.

The advantages for White-box testing:

 Side effects of having the knowledge of the

source code are beneficial to thorough testing. [4]

 Optimization of code becomes easy as

inconspicuous bottlenecks are exposed.[4]

 Gives the programmer introspection because

developers carefully describe any new

implementation.[4]

 Provides traceability of tests from the source,

thereby allowing future chang the source to be

easily captured in the newly added or modified

tests.[3]

 Easy to automate.[2]

 Provides clear engineering-based rules for when

to stop testing. [7][2]

Disadvantages:

 White-box testing brings complexity to testing

because the tester must have knowledge of the

program, including being a programmer. White-

box testing requires a programmer with a high

level of knowledge due to the complexity of the

level of testing that needs to be done.[4]

 On some occasions, it is not realistic to be able to

test every single existing condition of the

application and some conditions will be

untested.[4]

 The tests focus on the software as it exists, and

missing functionality may not be discovered.

II. BASIS PATH TESTING

In [1] authors emphasize on importance of basis path

testing by calling it as oldest structural testing

technique. It is based on the control structure of the

program and is one of the white boxes to testing

technique. Basis path testing allows tester to test flow

of control within the program. To test the program

using basis path testing tester need to convert program

to a graph showing flow of control known as control

flow graph. Once the graph is drawn, independent

paths are identified and for each path identified a test

case need to be designed. This method was first

proposed by Tom McCabe. To support number of

independent paths identified cyclomatic complexity of

the graph can also be calculated. The steps of

implementation of basic path testing are given below:

 Convert your code/algorithm to a control flow

graph.

 Find out independent path set

 Calculate the cyclomatic complexity of the

control flow graph.

 Cyclomatic complexity and independent path

set together define number of test cases need to

designed, to execute each statement at least

once.

 Finally design test cases to execute each path in

independent path set by defining expected

output for each input.

The notations used to draw a flow graph are as given

below.

Figure 1. Notations used to draw a controlflow graph

III. HOW DO DRAW A CONTROL FLOWGRAPH

Let us see the process of converting a

program/algorithm to a control flowgraph with the help

of an example.

Consider the following algorithm, we will consider an

algorithm for calculating the sum of even and odd

numbers separately.

Figure 2. Algorith to calculate sum of even and odd

numbers seperately

A. Convert algorithm to control flow graph

Assign numbers to each statement in algorithm the rules are

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 817

 every looping and selection statement should have

a separate number

 statements written between if and else should have

a separate number

 the statements from else to before endif should

have a separate number.

 end of every control structure should have a

separate number

 END indicates end of algorithm should have

separate number (statements written before end of

control structure and end of algorithm can be

grouped together)

By following above rules

Figure 3. Assigning statement numbers following the

rules given above

Use the statement numbers in algorithm as nodes in the

graph and depending upon the flow of control draw

arch’s between them

Figure 4. controlflow fraph for algorithm in Figure 3

B. Identifying independent path set

Independent path is the path to at least one new

node

Path 1 : 1 – 8

Path 2 : 1-2-3-4-6-7-2-8

Path 3 : 1-2-3-5-6-7-2-8

We need to design three test cases for the given

algorithm. To support this claim we must use another

technique, to calculate the cyclomatic complexity of the

graph.

C. Calculating cyclomatic complexity of the graph

Cyclomatic complexity = (Number of edges –

number of nodes) + 2

 = (9 – 8) + 2

 = 3

 Cyclomatic complexity = Number of

nodes with predicate logic + 1

 = 2 + 1

 = 3

Note : Node 2 and 3 are nodes with predicate logic

where flow of control decided based on condition.

Cyclomatic complexity = Number of regions

formed in graph = 3

Figure 5. Graph showing number of regions

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 818

Now the total numbers of paths match with the

cyclomatic complexity of the graph, so we need to

design three test cases for the algorithm.

IV. DESGINING TESTS CASES TO COVER ALL

TESTS UNDER WHITE BOX TESTING

Test case 1 : for path 1

Input : upper_bound value less than lower_bound

Expected Output : Program should terminate with the

value of even_sum and odd_sum equal to zero.

At the time of execution of this test case, following

white box tests can be covered

i. Statement 2 contains a condition the test is to be

conducted for verifying and validating the

condition written in statement this will cover

condition testing part of white box testing.

ii. After execution of statement 1 control will flow

to statement 2, we can ensure that correct data is

passed from statement 1 to statement 2 this will

cover data flow test.

iii. It will also cover loop testing technique as

statement 2 implements a loop we can cover 1
st

part of loop testing that ensures output to be

obtained when the loop is skipped completely.

Test case 2 : for path 2

Input : Value of lower_bound is equal to upper_bound

and it is even number

Expected output : It should print the value of

lower_bound(upper_bound) as even_sum and the

value of odd_sum should be zero.

The second test case will cover following tests from

white box testing technique

i. The second tests case will also ensure that the

condition written in statement 2 is correct. This

covers condition testing.

ii. Second test case also ensures that correct flows

from statement 1 to statement 2.

iii. Statement 3 implements selection structure which

implements a condition this test can be used to

ensure that condition written in statement three is

correct.

iv. This test will cover second step in loop testing it

will ensure the output to be obtained when the

loop is executed exactly once.

Test case 3 : for path 3

Input : The value of lower_bound is equal to

upper_bound and it is odd number

Expected output : It should print the value of

lower_bound(upper_bound) as odd_sum and the value

of even_sum should be zero.

At the time of third test case execution following tests

can be covered

i. Condition written in statement 2 can verified and

validated

ii. Flow of data from statement 1 to statement 2

iii. Condition written in statement three

iv. Execution of looping statement within its bounds

(Executing loop exactly once)

Test cases designed above will exercise conditions

written in statement 2 and 3 to both true and false side.

In addition to this test cases 2 and 3can be extended by

giving different values for lower_bound and

upper_bound, where lower_bound < upper_bound ,

this will become part of loop testing. It will check

results when the loop is executed twice, thrice,n times

and so on.

V. CONCLUSIONS

Theoretically, white box testing techniques may have

different techniques for different purposes, but it is not

necessary to conduct tests separately for each technique.

The basis path testing technique which is one of the

white box testing techniques is sufficient to carry out

entire white box testing. As each path formed in the

algorithm/program contains certain control structures

and control structures are formed with the help of

conditions and looping and selection statements. The

test cases designed to execute each path formed in

algorithm/program will ensure that it will cover

condition testing, dataflow testing and loop testing. If

path set identifies error handling paths the basis path

testing will ensure error handling paths also. This

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 819

implies that if basis path test is conducted there is no

need to conduct other tests under white box testing.

Only one technique will be sufficient for all tests, there

is no need to spend extra time and effort for conducting

all tests under white box testing technique.

VI. REFERENCES

[1]. Aakanksha Rana and Ajmer Singh, A

Comparative Study of Basis Path Testing and

Graph Matrices, INTERNATIONAL JOURNAL

OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY, ISSN: 2277-9655, Publication

Date: Jul 30, 2014, PP 746-750

[2]. Ammann, Paul; Offutt, Jeff (2008).Introduction

to Software Testing.Cambridge University

Press.ISBN 9780521880381.

[3]. Binder, Bob (2000).Testing Object-oriented

Systems.Addison-Wesley Publishing Company

Inc.

[4]. Ehmer Khan, Mohd (May 2010)."Different

Forms of Software Testing Techniques for

Finding Errors" (PDF).IJCSI International

Journal of Computer Science Issues.7 (3):

12.Retrieved 12 February 2013.

[5]. G.J.Myers, T.Badgett, T.M.Thomas, and

C.Sandler, The Art of Software Testing.John

Wiley & Sons, 2004.

[6]. M.Sharma and B.S.Chandra, "Automatic

Generation of Test Suites from Decision Table-

Theory and Implementation," in Software

Engineering Advances (ICSEA), 2010 Fifth

International Conference on, 2010, pp.459-464.

[7]. Myers, Glenford (1979).The Art of Software

Testing.John Wiley and Sons.

[8]. Software Testing by Cognizant Technology

Solutions

[9]. www.westfallteam.com/sites/default/files/papers/

Basis_Path_Testing_Paper.pdf

