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ABSTRACT 
 

Multi-item inventory models are developed with and without back-orders where demand is related to the unit price 

as price is inversely proportional to demand. The models are associated with infinite/finite storage capacities. In 

total, there are four multi-item inventory models which are formulated with the cost functions and with/without 

constraints in the form of signomilas and solved by both a modified geometric programming technique and gradient-

based non-linear programming method. For each model, sensitivity analysis with respect to the degree of economies 

of scale and invariant cost parameters are also presented. Each case is illustrated with numerical example and the 

results from two methods are compared. 

Keywords: Genetic Algorithms, Support Vector machines, Geometric Programming, Inventory models, EOQ and 

Demand dependent.  

 

 

I. INTRODUCTION 

 
Since the development of economic order quantity 

model by Harris[1], the researchers have formulated 

and solved different types of inventory models by 

several methods. Detailed reviews on the development 

of this area can be obtained in Arrow, Karlin and 

Scarf[2], Hadley and Within[3], Naddor[4] and others. 

 

In most of the inventory models, demand and unit cost 

of a product are assumed to be independent. But, in 

reality, this is not true. When demand of a product is 

high, the product is manufactured in large quantities 

and fixed cost of production are spread over large 

number of items. Ultimately, this process results in 

lower average unit production cost. For this reason, 

demand and unit cost are assumed to be inversely 

related to each other. Cheng [8, 9 and 11] developed 

some inventory models with this assumption and 

solved them using geometric programming technique 

[12]. 

 

Geometric Programming is a class among available 

amongst available non-linear programming techniques. 

It has certain advantages over other optimization 

methods. In some cases, it reduces to the unique 

solution of the simultaneous equations. For this reason, 

G.P. has been very popular and effectively used to 

engineering design and other areas. Duffin et al [5] first 

showed that geometric programming technique could 

be used with some advantages for particular type of 

problems. Even though geometric programming is an 

excellent method of solve non-linear decision making 

problems, the use of geometric programming in 

inventory models has been relatively infrequent. 

Kotchenberger[6] was the first to solve the basic 

economic order quantity model using geometric 

programming. In Worral and Hall [7], geometric 

programming techniques were utilized to solve a multi-

item inventory model under several constraints. Cheng 

[8 and 9] applied geometric programming to solve 

modified economic order quantity models. Harri Abou-

el-ata [12] and Abou-el-ata and Kotb[13] solved multi-

item inventory models under some restrictions with 

varying inventory costs using geometric programming 

and presented a sensitivity analysis based on the 

geometric programming approach. Here, we propose to 

solve some multi-item modified EOQ models with 

varying inventory costs and demand dependent unit 

cost using geometric programming technique. Some of 

these models are under constraints also[13,14 and 15]. 
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In this paper, multi-item modified EOQ inventory 

models with demand dependent unit cost and infinite 

replenishment has been formulated in crisp 

environment with/without storage space constraint. 

Here, shortages are allowed and fully backlogged[16, 

17 and 18]. With the above assumptions, expressions 

for the total average cost are derived in signomial form 

and minimized via both a modified geometric 

programming technique and gradient-based  non –

linear optimization method[19, 20 and 21]. As a 

particular case, the results of the models without 

shortages are derived. The models are illustrated with 

numerical examples and the results from two 

minimization techniques are compared. It is seen that in 

some cases, especially for constrained inventory 

models, G.P. produces slightly better results. A 

sensitivity analysis is presented for both the models 

with respect to the cost parameters and degree of 

economies of scale [22].  

 
II. MODEL ANALYSIS  

 

The following notations and assumptions are being 

made in developing the mathematical model. 

 

2.1 Model Formulation 

 

W= maximum allowable available storage space, 

n= number of items,  

Parameters for the i
th
 ( i=1,2,3,…,n) item, 

Di = Demand per unit time, 

Qi= shortage level, 

Si= shortage level, 

Coi= cost per unit item,  

C1i = holding cost per unit item, 

C2i = shortage cost per unit item, 

C3i = set up cost per cycle, 

Wi= storage area required per unit time, 

Wji = dual variable. 

 

2.2 Assumptions 

(i) Production is instantaneous with zero lead time 

(ii)  When the demand of an item increases then 

        the total purchasing cost spread all over the  

items and hence the unit purchasing cost reduces and 

varies inversely with demand. 

 
Where  

 

Equation 2 holds good as purchasing cost and demand 

for an are non-negative. 

 

III. MATHEMATICAL FOR MULATION AND 

ANALYSIS  

3.1 Model 1: 

The EOQ model with shortages and demand –

dependent unit cost. 

The total average cost of multi-item for an infinite 

replenishment problem is  

 
The above objective function is an unconstrained 

signomial function with one degree of difficulty and is 

now solved by G.P. The corresponding dual problem is  

 

 
subject to the normality, orthigonality and non-

negativity conditions. According to Hariri and Abou-el-

ata and Kotb [13] these conditions are  

 

 
There are four linear equations in five unknowns 

having an infinite number of solutions. However the 

optimal values of the weights in terms of w3i  are  

 

 

 

 
substituting the values of Wji’s in the equation (2) we 

get, 

 
To find the optimal value of W3i which maximizes 

d(W3i), we take logarithm on equation (4), differentiate 

with respect to W3i and then the result is set to zero. 

This yields  

 
The other optimal values of the weights are  

coi = a iDi - bi   (1)

a i > 0  and   bi >1   (2)

Min  TC(Di , Qi , Si ) =  a iDi - bi +
c3Di

Qii=1

n

å    (3)  

Max d(w) =
c3i

w2i
( )

i=1

n

Õ
w2i

a i

bi( )
w1i  

            (4)

w1i +w2i +w3i +w4i -w5i =1                        (5)

w1i = 1
2bi -1( )

                    (6)

w2i = bi -1( ) / 2bi -1( )          (7)

w4i = bi -1( ) / 2bi -1( )+w3i   (8)

d(w3i ) = a iDi - bi +
c3Di

Qii=1

n

å    (9)

w3i

* =
c1i
c2i

( ) bi -1( ) / 2bi -1( )  (10)
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Substituting these optimal values of the weights in the 

equation (4) we get the optimal values of d(w3i) as 

d(w3i*). 

The minimum total average cost will be obtained from 

relation 

 
To obtain the optimal values Di*, Qi* and Si* we use 

the following relations according to Duffin and 

Peterson[5], 

 
Solving the relations we get the optimal values of the 

decision variables as 

 

 

 
 

2.3 Model 2: 

The EOQ model with shortages and demand –

dependent unit cost under storage capacity 

restriction. 

The total average cost of multi items for an infinite 

replenishment problem is 

 
 subject to  

 
Following Hariri and Abou-el-ata[12] or Abou-el-ata 

and Kotb [13], the primal problem is a constrained 

signomial function with degree of difficulty two and it 

is solved by G.P. method. The corresponding dual 

function is  

 

 

 
Proceeding as in model-1, the normality and 

orthogonality conditions are  

 

 
Solving the above equations in terms of w1i and w2i we 

get  

 
substituting the above weights in  the equation 5 we get  

 
To find the optimal value of Wji’s that minimizes (6) 

we take logarithm of (6) differentiate with respect to 

W1i and W3i and then set to zero. 

We have 

 
substituting the value of w3i in equation (7)  we have 

 
Solving the above non-linear eqation by any trial and 

error method, we get the optimal value w*1i which  

maximizes the dual function and the corresponding 

optimal values of the weights are  

     

      
The optimal values of Di*, Qi*,Si* and TC* are 

obtained from the relations as in model-1 

 

 

 
and  

 

 

IV. RESULTS 

 
Now we will illustrate the model for some numerical 

data. We consider two items with the following values 

 

Table 1. The optimal values of the variables and cost 

function with SVM 

i   
C1 C2 C3 

1 1500 1.7 1.2 30 70 

2 1700 1.9 1.5 26 80 

 

 

 

 

w1i

* = 1
2bi -1( )

                    (11)

w2i

* = c3i bi -1( ) / 2bi -1( )          (12)

w4 i

* = 1+ c1i( ) bi -1( ) / 2bi -1( ) +w3i   (13)

w5i

* = 2.c1i . bi -1( ) / 2bi -1( ) +w3i   (14)

TC* = n d(w5i )
*( )

1/n

    (15)

w5i

* = 2.c1i . bi -1( ) / 2bi -1( )  (16)

Di
* = 2.c1i . bi -1( ) / 2bi -1( )+ 2bi  (17)

Qi
* = 1+ c1i( ) bi -1( ) / 2bi -1( )   (18)

Si
* = 1+ c1i( ) / 2bi -1( )   (19)

Min  TC  (Di ,Qi ,Si ) = a iDi - bi +
c3Di

Qii=1

n

å +
c3i

w2i
( )

i=1

n

Õ
w2i

a i

bi( )
w1i  

(20)

wi
i=1

n

å Qi £ w  (21)

Max d(w) = ai
w4 i

( )
i=1

n

å
w1i

c3i

w2i
( )

w2 i

c1i + c2i( ) / 2w3i   (22)

g i = w6i

i=1

n

å     (23)

w1i +w2i +w3i +w4 i -w5i = 1  (24)

1- bi( )w1i +w2i = 0    (25)

w2i = 1- bi( )w1i       (26)

d(w1i ,w3i ) = w1i
c3i

w2i
( )

w2 i

c1i + c2i( ) / 2w3i  
i=1

n

Õ  (27)

1- bi( )w1i +w2i + c1i + c2i( ) / 2w3i     (28)

w1i
c3i

w2i
( )

w2 i

c1i + c2i( ) / 2w3i + 1- bi( )w1i     (29)

W2i*= 1- bi( )w1i      (30)

W3i*= 1- bi( )c1i      (31)

Di* = ai
w4 i

( )
i=1

n

å
w1i

c3i

w2i
( )

w2 i

c1i + c2i( )   (32)

Qi
* = c1i + c2i( ) / 2w3i + 1- bi( )w1i             (33)

Si
* = 1- bi( )w1i +w2i                                (34)

TC* = n{d(w*)}1/n       (35)

a b
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Table 2. The shortage optimal values of the variables 

and cost function with GA-SVM 

i Di* Qi* Si* TC* 

1 480.45 243 9.24 
831 

2 223.32 232 8.32 

 

Table 3. The without shortage optimal values of the 

variables and cost function with GA. 

i Di* Qi* Si* TC* 

1 480.45 243 9.24 
831 

2 223.32 232 8.32 

 

Here, the results placed at the top are due to G.P. and 

the results from non-linear optimization techniques are 

placed within the brackets.  

For two items we assume the following data 

 

Table 4. The optimum values with shortages 

i   
C1i C2i C3i W 

1 170 2.8 1.7 30 44 6 

2 150 2.9 2.2 35 35 7 

 

Table 5. The optimum values without shortages 

i Di* Qi* Si* TC* 

1 48 32 3  

246 2 32 19 4 

 

Table 6. The mixed optimum values without shortages 

i Di* Qi* Si* TC* 

1 58 42 4  

346 2 38 29  

 

From the above tables, it is observed that for both 

models, G.P. gives better results than the gradient –

based non-linear optimization technique. For the 

present formulation, this improvement is noticeable for 

the inventory models under constraints. 

 

V. SENSITIVITY ANALYSIS 
 

Following Cheng [8,9, 11], the sensibility analysis has 

been developed with the percentage change of degree 

of economies of scale and cost parameters. The primal 

decision variables, dual objective function and primal 

objective function are changed due to change of c1i, c2i 

and c3i . 

 

 

 

Table 6. 

    %   i Di* Qi* Si* TC* 

2 1 453 240 10 840 

2 239 160 9 

4 1 453 240 8 845 

2 235 231 9 

6 1 431 254 10 847 

2 236 157 11 

8 1 453 239 11 855 

2 235 156 10 

 

5.1 Sensitivity Analysis for Model-1 with GA-

SVM 

Now, for the numerical data in 6.1 of model-1, the 

changes in the decision parameters and cost function 

are presented due to the percentage variation in 

inventory costs and the exponent. 

 

Table 7. Effect of changing holding cost 

    %   i Di* Qi* Si* TC* 

 

  2 

1 468 240 9.01 850 

2 230 160 8.95 840 

   

  4 

1 475 240 7.951 873 

2 230 158 8.01 750 

    

  6 

1 472 233 8.8 790 

2 230 156 7.92 800 

   

  8 

1 470 230 7.45 790 

2 225 231 6.98 810 

 

 

From the above table we see that the optimal cost 

increases with the increase of the cost parameters, but 

the optimal cost decreases with increase in the degree 

of economies of scale. 

 

VI. CONCLUSION 
 

In this paper we developed multi-item demand-

dependent EOQ models with or without space capacity 

restriction.  We investigated also the cases when the 

shortages are not allowed with GA-SVM. We solved 

such problems by revised geometric programming 

method. Finally, we discussed about the sensitivity 

analysis with respect to cost parameter and degree of 

economy of scale. This analysis is different from 

conventional GP and quite general in nature. Hence, 

this technique can be applied to solve the different 

decision making problems in inventory and other areas. 

 

a b



Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 923 

VII. REFERENCES 

 
[1]. Abdel-Mottaleb,M., Elgammal, A., "Face 

Detection in complex environments from color 

images,’’ IEEE ICIP, pp. 622- 626, Oct. 2016. 

[2]. Aizerman, M., Braverman, E., Rozonoer, L.. 

"Theoretical foundations of the potential function 

method in pattern recognition learning". 

Automation and Remote Control25: 821-837, 

2014. 

[3]. Antonio J. Colmenarez and Thomas S. Huang. 

Face detection with information-based maximum 

discrimination. In Computer Vision and Pattern 

Recognition, pp 782-787, 2015. 

[4]. Bellaire, G., Schluns, K.,  Oppermann, K.,  

Schimke, W.,  "Matching Using Object Models 

Generated from Photometric Stereo Images", 

Proc. Machine Vision Applications in Industrial 

Inspection IV, SPIE Vol. 2665, San Jose, 

Califomia, pp. 70-81, 2015.  

[5]. M.Raja Sekar, "Region classification using  

SVMs", Journal of Geomatics, pp 87-89, 2007. 

[6]. M.Raja Sekar, "Automatic Vehicle 

Identification" Journal of Advanced Research in 

Computer Engineering, pp 0974-4320,  2015. 

[7]. M.Raja Sekar "FER from Image sequence using 

SVMs ", Journal of Data Engineering and 

computer science, pp 80-89, 2016. 

[8]. Burges, C. J. C.,  A tutorial on support vector 

machines for pattern recognition. Data Mining 

and Knowledge Discovery, 2(2):pp 121-167, 

2015. 

[9]. Behrooz Kamgar-Parsi, Behzad Kamgar-Parsi, 

Jain, A., Dayhoff, J., "Aircraft Detection: A Case 

Study in Using Human Similarity Measure", 

IEEE Trans. Pattern Analysis and Machine 

Intelligence, Vol. 23, No. 12, 2001, pp. 1404-

1414,2016. 

[10]. Beymer, D. J.,  Face recognition under varying 

pose. AI Memo 1461, Center for Biological and 

Computational Learning, M.I.T., Cambridge, 

MA, 2016. 

[11]. Brunelli, R., Poggio, T.,  Face recognition: 

Features versus templates. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 

15(10):1042-1052, 2015. 

[12]. CHAPELLE, O., HAFFNE,R, P., AND 

VAPNIK, V. N. Support vector machines for 

histogram-based image classification. IEEE 

Transactions on Neural Networks 10, 5, 1055-

1064, 2016. 

[13]. Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, 

T.S., Facial Expression Recogni- tion From 

Video Sequences. In IEEE Intl Conf. on 

Multimedia and Expo (ICME), volume 2, pages 

121 - 124, 2014. 

[14]. DORK ´O, G., AND SCHMID, C. Selection of 

scale-invariant parts for object class recognition. 

In IEEE International Conference on Computer 

Vision, vol. 1, pp. 634-639,2016. 

[15]. Daugman, J.G.,  "Uncertainty Relation for 

Resolution in Space,  Spatial Frequency, and 

Orientation Optimized by Two-Dimensional 

Visual Cortical Filters", Journal of Optical 

Society America A, Vol. 2, No. 7, 1985, pp. 1160 

- 1169, 2016.  

[16]. FONSECA, E. S., R. C. GUIDO, A. C. S., AND 

PEREIRA, J. C., Discrete wavelet transform and 

support vector machine applied to pathological 

voice signals identifiction. In IEEE International 

Symposium on Multimedia ,2017. 

[17]. M.Raja Sekar, " Image Authentication using 

SVMs", Journal of Advanced Research in 

computer Engineering, p367-p374, 2015. 

[18]. M.Raja Sekar, "Classification of images using 

SVMs", International Journal of Mathematics, 

Computer Sciences and Information Technology, 

p25-29,2014. 

[19]. M.Raja Sekar, "Analysis of Images Using 

SVMS" International Journal of Mathematics, 

Computer Sciences and Information, p 197-

201,2015. 

[20]. M.Raja Sekar, "Implementation of recursive 

construction for building effective compression 

strategy", JRRECS, P23-28, 2013. 

[21]. M.Raja Sekar, "An Effective Atlas-guided Brain 

image identification using X-rays", IJSER, P23-

29,2016. 

[22]. J.Dugelay, J.,-C. Junqua, C., Kotropoulos, R., 

Kuhn, F., Perronnin, I., Pitas,L.,, "Recent 

Advances in Biometric Person Authentication", 

Proc. Int. Conf. Acoustics, Speech and Signal 

Processing (ICASSP), Orlando,  Vol. IV, pp. 

4060-4062, 2015. 


