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ABSTRACT 
 

Virtualized cloud-based services can take advantage of statistical multiplexing across applications to yield 

significant cost savings to the operator. Achieving similar benefits with real-time services can be a challenge. It 

seeks to lower a provider’s costs of real-time IPTV services through a virtualized IPTV architecture and through 

intelligent time-shifting of service delivery. The merits of the differences in the deadlines associated with Live TV 

versus Video-on-Demand (VoD) to effectively multiplex these services. A generalized framework is provided for 

computing the amount of resources needed to support several services, without missing the deadline for any service. 

An optimization formulation that uses a generic cost function is build. The multiple forms for the cost function (e.g., 

maximum, convex and concave functions) to reflect the different pricing options are implemented. The solution to 

this formula gives the number of servers needed at different time instants to support these services. A simple logic 

for time-shifting scheduled jobs in a simulator and study the reduction in server load using real traces from an 

operational IPTV network is implemented. End results explain the load is minimized by ∼ 24%. There are 

interesting open problems in designing mechanisms that allow time-shifting of load in such environments. 
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I. INTRODUCTION 

 

As IP-based video delivery becomes more famous, the 

demands placed upon the service provider’s resources 

have rapidly increased. Service providers typically 

provision for the peak demands of each service across 

the subscriber population. Provisioning for peak 

demands leaves resources under-utilized at all other 

periods. This is particularly ensured with Instant 

Channel Change (ICC) requests in IPTV. 

 

In IPTV, Live TV is typically multicast from servers 

using IP Multicast, with one group per TV channel. 

Video-on Demand (VoD) is also supported by the 

service provider, with every request being served by a 

server using a unicast stream. When end users change 

channels while watching live TV, we need to provide 

extra functionality to so that the channel change takes 

effect instantly. For each channel change, the user has 

to join the multicast group associated with the channel 

and wait for some time enough data to be buffered 

before the video is displayed. As a result, there have 

been many attempts to support instant channel change 

by mitigating the user perceived channel switching 

latency [1], [2]. With the typical ICC implemented on 

IPTV systems, the content is delivered at a speeded up 

rate using a unicast stream from the server. The series 

of constituting a playoff buffer is filled quickly, and 

this keeps switching latency small. When the play out 

buffer is filled up to the play out point, the set top box 

goes back to receiving the multicast stream. 

 

ICC adds a demand that is proportional to the number of 

users concurrently initiating a channel change event [1]. 

Operational data shows that there is a dramatic burst 

load placed on servers by correlated channel change 

requests from consumers (Refer Figure: 1). This results 

in large peaks made on every half-hour and hour 

boundaries and is often significant in terms of both 

bandwidth and server I/O capacity. Currently, this 

demand is served by a vast number of servers grouped 

in a data center for serving individual channels, and are 

scaled up as the number of customers increases. 

However this demand is transient and typically only 
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lasts several seconds, possibly up to a couple of minutes. 

As results, many of the servers dedicated to live TV sit 

idle outside the burst period. 

 

Our goal in this paper is to take advantage of the 

difference in workloads of the different IPTV services 

to better utilize the deployed servers. For example, 

while ICC usage is very bursty with a large peak to 

average ratio, VoD has relative manner in steady load 

and imposes “not so stringent” delay bounds. Most 

importantly, it offers opportunities for the service 

provider to deliver the VoD content in anticipation and 

potentially out of-order, taking advantage of the 

buffering available at the receivers. We try to minimize 

the resource requirements for supporting the service by 

taking advantage of statistical multiplexing across the 

different services - in the sense; we try to satisfy the 

peak of the sum of the demands of the services, rather 

than the sum of the large demand of each service when 

they are handled independently. Virtualization provides 

us the ability to share the server resources across these 

services. 

 

In this paper, Our aim a) to use a cloud computing 

infrastructure with virtualization to dynamically shift 

the resources in real time to handle the ICC workload, b) 

to be able to anticipate the change in the workload 

ahead of time and preload VoD content on STBs, 

thereby facilitate the shifting of resources from VoD to 

ICC during the bursts and c) solve a general cost 

optimization problem formulation without having to 

meticulously model each and every parameter setting in 

a data center to facilitate this resource shift. 

 

In a virtualized environment, ICC is managed by a set 

of VMs (typically, a few VMs will be used to deliver a 

popular channel). Other VMs would be developed to 

handle VoD requests. With the ability to spawn VMs 

quickly [3], we believe we can shift servers (VMs) from 

VoD to handle the ICC demand in a matter of a few 

seconds.  

 

Note that by being able to predict the ICC bursts 

(channel change behavior can be predicted from historic 

logs as a result of live TV show timings. The channel 

changes usually occurring every half an hour (see 

Figure 1)). Figure 1 also shows the respective VoD load 

and the aggregate load for both services together. In 

anticipation of the ICC workload, we try to accelerate 

delivery of VoD content (for example, for a very small 

number of minutes of play out time) to the end users’ 

STBs and shift the VoD demand away from the ICC 

burst interval (see Figure 2). Also this will be ensured 

that VoD users will not notice any impairment in their 

delivered quality of service (e.g. frozen frames etc.) as 

the play out can be from the local STB cache. 

 

 

 

Figure 1. LiveTV ICC and VoD Concurrent Sessions 

(vs) Time, ICC Bursts Seen Every Half Hour 

 

 

Figure 2. Live TV ICC and VoD Packet Buffering 

Timeline 

 

In preliminary work on this topic [4], we analyzed the 

maximum number of servers that are needed to service 

jobs with a strict deadline constraint. We also assume 

non-causal information (i.e., all deadlines are known a 

priority) of the jobs arriving at each instant. In this 

paper, we kept in mind a generalized cost function for 

the servers. The cost of the servers in this model can be 

a function of time, load, etc. Our aim is to find the 

number of servers at each time instant by minimizing 

this generalized cost function while at the same time 

satisfying all the deadline constraints. 

 

The sever-capacity region formed by servers at each 

time instant such that all the jobs arriving meet their 

deadlines is identified, which is explained as: the region 
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such that for any server tuple with integer entries inside 

this region, all the deadlines can be met and for any 

server tuple with integer entries outside this region, 

there will be minimum one request that misses the 

deadline. Also we show that for any server tuple with 

integer entries inside the server-capacity region, an 

earliest deadline first (EDF) strategy can be used to 

serve all requests without missing their deadlines. This 

is an extension of the previous results in the literature 

where the numbers of servers are fixed at all times [5]. 

The server-capacity region is formed by linear 

constraints, and thus region is a polytypic. 

Having identified the server-capacity region in all its 

generality, we consider the cost function to be one of 

several possibilities: a separable concave function and a 

separable convex function, or a maximum function. 

Note that even though the functions are concave/convex, 

the possibility set of server tuples is all integer tuples in 

the server-capacity region. This integer constraint leads 

the problem hard, in general. Show that for a piecewise 

linear separable convex function, an optimal strategy 

that redues the cost function can be easily described. 

This strategy only needs causal information of the jobs 

arriving at each time-instant. For any concave cost 

function, show that the integer constraint can be relaxed 

since all the corner points of the server-capacity region 

(which is a polytope) have integer coordinates. Thus, 

best known concave programming techniques without 

integer constraints can be used to solve the problem [6]. 

Finally, for a maximum cost function, seek to minimize 

the maximum number of servers used over the entire 

period. This paper explains a closed form expression for 

the optimal value for the maximum number of servers 

needed based on the non-causal information of the job 

arrival process. 

 

We show two examples of the cost function for 

computing the number of servers in namely, the 

maximum and piecewise linear convex cost functions. 

Set up a series of numerical simulations to see the effect 

of varying firstly and the ICC durations and secondly 

VoD delay tolerance on the total number of servers 

needed to accommodate the combined workload. 

Findings indicate that potential server bandwidth 

savings of (20% - 25%) can be realized by anticipating 

the ICC load and thereby shifting/smoothing the VoD 

load ahead of the ICC burst. Finally, shows by means of 

a faithful simulator implementing both these services in 

paper, that a careful choice of a look ahead smoothing 

window can help to average the additional VoD load. 

Our approach only requires a server complex that is 

sized to meet the requirements of the ICC load, which is 

no deadline flexibility, and paper explains can almost 

completely mask the need for any additional servers for 

dealing with the VoD load. 

 

II. NUMERICAL RESULTS 
 

Maximum Cost Function 

 

A series of experiments is setup to see the effect of 

varying firstly, ICC durations and secondly, VoD delay 

tolerance on the total number of servers needed to 

accommodate the added workload. All figures include a 

characteristic diurnal VoD time series (in blue) and a 

LiveTV ICC time series (in red). Based on these two 

time series, the optimization rule described in computes 

the minimum number of concurrent sessions that need 

to be accommodated for the added workload. The 

legends in each plot indicate the duration that each VoD 

session can be delayed by the superposition of the 

number of VoD sessions with a periodic synthetic 

LiveTV ICC session.  

 

The duration of the ICC session is set to be 15 seconds 

(i.e. all ICC activity come in a burst and lasts for 15 

seconds), the peak of the pulse is set to be the peak of 

the VoD concurrent sessions for the entire day. We now 

compute the total number of concurrent sessions that the 

server needs to accommodate by delaying each VoD 

session from 1 second to 20 seconds in steps of Five 

seconds. It is observed that as VoD sessions tolerate 

more delay the total number of servers needed reduce to 

the point (15 sec delay) at which all ICC activity can be 

accommodated with the same number of servers that are 

provisioned for VoD thus resulting in 50% savings in 

the server bandwidth.  

 

If the VoD service can afford only 1 second delay and 

then the total number of sessions that need to be 

accommodated is roughly double. A similar effect, the 

only difference here is that an operational trace is used 

for LiveTV.  Note that as VoD requests are delayed up 

to 20 seconds the total server bandwidth reduce by 

about 28% as compared to serving LiveTV and VoD 

without any delay. 

 

A. Convex Piecewise Linear Cost Function 

Note how for different values of K allocates 

substantially different number of servers. Simulates a 
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synthetic LiveTV ICC 15 sec pulse width of amplitude 

≈ 12000 and an operational VoD measurement trace. 

When K = 12500 the number of servers needed peak 

with every incoming ICC burst (spaced 30 minutes 

apart) and then bottom out at the VoD envelope (in 

blue). If we use a smaller K, e.g. K = 10000, many 

chunks will miss their deadlines (especially during the 

peak hour) if total of K servers are used. A large 

number of chunks have to be served with a higher cost 

(red spikes of value 2.3×10
4 
during the busy hour). The 

number of chunks that need to be served with a higher 

cost is larger when K is smaller. For K which is at-least 

given all the requests can be served at the lower cost 

and hence never are more than K servers needed, there 

would be a chunk that misses deadline with K servers 

and hence there will be at-least one chunk that is served 

at higher cost. Reduce the value of K; high jobs need to 

be served with higher cost. Portrays a similar story for 

an operational LiveTV trace. With a smaller K value, 

jobs are delayed to create larger overshoots (red spike 

of value 3.6 × 10
4
). 

III. SIMULATION 
 

To demonstrate the efficacy of our proposal in the 

realistic situation of supporting IPTV services, 

implemented the adjustment mechanism in a custom 

event-driven simulator. Customers request traces 

were collected over 24 hours at a set of VHOs in 

one state for both VoD and ICC.  Our data more 

than 18 million VoD and ICC requests in that time 

period. Result shows that a substantial reduction (∼ 

24% for our traces) in peak server load by adjusting 

the deadlines of VoD requests in anticipation of ICC 

requests.  

A. Experiment Setup 

The simulator models the customers and the server 

and represents by a simple small link, the complex 

network that typically connects them. We view each 

video as comprising of chunks. This is similar to 

what most commercial streaming systems (e.g., 

HTTP Live Streaming, Smooth Streaming) employ 

today. When a customer’s requests a video, it is 

send the requests to the server and in response 

identifies the chunks in video. Set each chunk to be 

up to 30 seconds long. Each customer then requests 

N chunks in parallel from the server. In our 

experiments we nominally set N = 25. The server 

then schedules these requests according to their 

deadlines (i.e., the time by which the client should 

have that chunk) and transfers it before the deadline. 

Receiving a chunk, the client requests the next 

outstanding chunk. 

Each ICC request results in a request of one 15-second 

chunk of video that has to be delivered immediately. 

As observed in the traces, there is a sudden burst in 

ICC requests every 30 minutes and lasts for a short 

duration. Call this the ICC Burst Window. To minimize 

the load due to these ICC bursts by advancing the 

transfer of previously scheduled VoD requests. The 

process can adopt is depicted in Figure. Assuming that 

the ICC burst window lasts from time t+s to t+b, we 

start the adjustment process at an earlier point, at time t. 

In the window from t to t+s, which can call the 

smoothing window, advance the jobs already scheduled 

in the ICC burst window.  

 

These jobs are served prior to their deadline. However, 

in this system can make room for the increased number 

of ICC requests expected in the burst window. As 

results, these requests will result in some continued 

VoD load during the burst window. One could however 

implement a most sophisticated scheme when the 

environment warrants it. 

 

The reduction in load depends on multiple factors. First, 

need to predict when the burst will occur. Next, need to 

predict how long the burst’s effect will last (i.e., burst 

window). We also need to predict how many VoD jobs 

scheduled in the burst window have to be moved. 

Finally, when start the adjustment process, its time 

period for averaging the load (i.e., smoothing window) 

also plays a key role. 

 

 

Figure 3.  Overview of the Job Adjustment Process 

Study each of these effects in our experiments.  

Assume that our ICC spike occur at fixed 30 minute 

intervals. By default assume that our burst window is 

one minute long, but also experiment with two minute 

bursts. Typically assume that the adjustment starts 10 

minutes before the burst window and that all the 
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scheduled VoD jobs are randomly adjusted over the 

smoothing window. The smoothing window is also set 

at ten minutes. Note that ideally want to use a larger 

smoothing window than the burst window to spread out 

the load imposed by the moved jobs; otherwise will 

experience a spike in the load during the smoothing 

window, thus negating the benefit of a procedure 

somewhat. Primary metric is the number of concurrent 

streams that servers have to serve. Use this as our 

metric because it directly translates to how many 

servers are required to support the total request load. 

The peak number of concurrent streams is most 

relevant because it give the minimum number of 

servers required. 

 

B. Establishing a Baseline 

In Figure 1, shows separately plot the load due to 

VoD requests only, ICC requests, and the combined 

load for both VoD and ICC requests. Figure 1 

explains that if we did not do any adjustment, would 

need to support a maximum of 36324 concurrent 

streams of VoD and ICC requests. If only supported 

ICC requests, this goes down to 24942 streams. This 

reduces further to 11686 streams considering VoD 

alone. Recall the ICC requests result in 15 seconds 

of data transfer and are served immediately (the 

deadline is 0). Hence the best can do is to go down 

to 24942 streams if we support both services are 

able to mask the VoD service completely (a 31.33% 

reduction). This gives us a baseline best case (lower 

bound) to compare the performance of our proposed 

adjustment mechanism. 

 

Figure 4. Reduction in Load Due to Job Rescheduling 

 

C. Rescheduling Jobs Reduces Load 

For the main results, shows that rescheduling jobs to an 

earlier deadline is indeed possible and that it can result 

in a significant reduction in the aggregate load. Assume 

an ICC burst window of one minute and a smoothing 

window of ten minutes. Also assume that all the VoD 

jobs prior to the burst window are moved to the 

beginning of the smoothing window.  

 

The inset in Figure 10 explains the trends for the whole 

day. This paper plot peak period for the day (the first 

Four hundred minutes, marked by the shaded region in 

the inset) during which the peak number of streams are 

served. The result of this experiment presents that with 

the adjustment are able to bring the peak number of 

concurrent streams down from 36324 streams to 27813 

streams, a ∼ 24% reduction. This number is close to the 

load due to ICC requests alone, indicating that have 

successfully moved all the VoD requests are needed to 

making way for the ICC burst to be served in the burst 

window. 

 

While this is a substantial reduction, it is lower than the 

possible 31% reduction. This Paper attribute the lower 

gain to the way exercise the time-shifting of the VoD 

load. Recall the adjustment of serving VoD requests is 

done at the start of the smoothing window. Any VoD 

requests that arrive after the adjustments are initiated 

cannot be rescheduled and results in load during the 

burst window as well. With a 10 minute smoothing 

window, see quite a few of the new VoD requests after 

the adjustment is complete. To understand this 

interaction better, study the effect of varying the size of 

the smoothing window next. 

D. Effect of Smoothing Window Size 

The smoothing window size determines how the VoD 

load from the burst window is distributed. Selecting a 

small smoothing window results in more accurate 

determination of how many scheduled VoD jobs exist, 

but can result in a load spike within the smoothing 

window. On the other way a large smoothing window 

allows us the average the VoD load from the burst 

window better, but prevents the re-scheduling of many 

new VoD sessions that arrive subsequently. In this 

paper quantify the effect of the smoothing window, 

while keeping the burst window at two minutes. VoD 

jobs are shifted from those two minutes.  

 

Interestingly, see that at the peak (around the 180 

minute time marker), using a Five minute 

smoothing window results in better performance 

than a Ten minute smoothing window (26979 vs. 
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27813 streams). In this paper attribute the 

improvement to the ability to reschedule more VoD 

streams because of the smaller smoothing window. 

It is not as simple as just employing a smaller 

window. When reduce the smoothing window 

further, to two minutes, the load is consistently 

higher than the other windows. Even more 

importantly, the ten minute smoothing window 

consistently outperforms the others outside the peak 

viewing period. This is because at the peak period, 

the number of ICC requests are significantly higher 

than the VoD requests. This moving as many VoD 

requests as possible is important. At other ways, the 

number of VoD requests is higher. This moving all 

the VoD requests to an earlier deadline increases the 

load at that time of event. This is significant; it tells 

us that need a more sophisticated approach to 

predicting the load in a burst and in selecting the 

size of the smoothing window. 

E. Effect of Burst Window 

Understanding the burst window is important as it 

tells us how long the burst is going to last. We study 

the effect of the size of the burst window by 

changing the burst window from 1 minute to 2 

minutes, while keeping the smoothing window fixed 

at 10 minutes. We present the result in Figure 12. 

Interestingly, we see that the size of the burst 

window has only a small role to play during the 

peak. This is because the majority of the load during 

the peak comes from ICC requests and the new 

VoD sessions. However we see that outside the 

peak interval, using a smaller burst window results 

in lower load. This again can be attributed to the 

fact that the load in these periods is primarily due to 

VoD and moving more jobs (like we do with the 2 

minute burst windows) is counterproductive. Finally, 

we see sharp reductions in load after the burst 

window of 2 minutes, but not with a burst window 

of 1 minute. This is again because we have moved 

many more VoD jobs than necessary. 

F. Probabilistically Moving Jobs 

The burst window tells us the interval from which we 

need to move the VoD jobs, and the smoothing 

window gives us the duration over which we may 

schedule them. However, we also need to know how 

many jobs to move. To capture this, we 

probabilistically moved jobs to the smoothing window. 

We set the smoothing window at 10 minutes and the 

burst window at 2 minutes but varied the probability p 

of moving a job from 0.25 to 1.0 and plot the result in 

Figure 13. We note some interesting behavior. First, 

during the peak (marked with ’1’), we see that 

increasing the probability of moving jobs decreases 

the number of concurrent streams. However, at other 

times (marked with ’2’), decreasing the probability 

decreases the concurrent streams. This result clearly 

shows that we need a smarter way of figuring out how 

many jobs to move for this procedure to be applicable 

in a general. 

G. Results Summary 

In this section, results are presented from a simple 

adjustment mechanism. Our results show that even our 

simple mechanism is able to give significant reductions 

in load. However, there is still room for improvement. 

We showed that the load reduction is dependent on the 

duration of the adjustment (burst window), the number 

of jobs moved and the period over which they are 

averaged (the smoothing window). Our results show 

that a particular value for each of these parameters is 

not the best across the board; instead the value chosen 

depends on the relative load of each of the services 

being adjusted. We believe that mechanisms to predict 

this relative load of each service and dynamically 

choose values for the parameters based on this 

prediction can yield further improvements. Designing 

such mechanisms is an opportunity for interesting 

future work. 

IV. CONCLUSION 
 

We studied how IPTV service providers can 

leverage a virtualized cloud infrastructure and 

intelligent time-shifting of load to better utilize 

deployed resources. Using Instant Channel Change 

and VoD delivery as examples, we showed that we 

can take advantage of the difference in workloads of 

IPTV services to schedule them appropriately on 

virtualized infrastructures. By anticipating the 

LiveTV ICC bursts that occur every half hour we 

can speed up delivery of VoD content before these 

bursts by prefilling the set top box buffer. This helps 

us to dynamically reposition the VoD servers to 

accommodate ICC bursts that typically last for a 

very short time. 

Our paper provided generalized framework for 

computing the amount of resources needed to 

support multiple services with deadlines. We 

formulated the problem as a general optimization 

problem and computed the number of servers 
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required according to a generic cost function. We 

considered multiple forms for the cost function (e.g., 

min-max, convex and concave) and solved for the 

optimal number of servers that are required to 

support these services without missing any 

deadlines. 

We implemented a simple time-shifting strategy and 

evaluated it using traces from an operational system. 

Our results show that anticipating ICC bursts and 

time-shifting VoD load gives significant resource 

savings (as much as 24%). We also studied the 

different parameters that affect the result and show 

that their ideal values vary over time and depend on 

the relative load of each service. Mechanisms as 

part of our future work. 
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