
CSEIT172635 | Received : 01 Nov 2017 | Accepted : 14 Nov 2017 | November-December-2017 [(2)6: 118-124]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

118

Integration of Multi Server for Profit Efficiency in Cloud
Computing

V. Praveen1, V. Gobu2, M. Kavitha3, T. Suvaikin Punitha4

1, 2&4
Assistant Professor, N.S.N College of Engineering and Technology, Karur, Coimbatore, Tamilnadu, India

3
Research Analyst, IsClor Soft Solutions, Coimbatore, Tamilnadu, India

ABSTRACT

Virtualized cloud-based services can take advantage of statistical multiplexing across applications to yield

significant cost savings to the operator. Achieving similar benefits with real-time services can be a challenge. It

seeks to lower a provider’s costs of real-time IPTV services through a virtualized IPTV architecture and through

intelligent time-shifting of service delivery. The merits of the differences in the deadlines associated with Live TV

versus Video-on-Demand (VoD) to effectively multiplex these services. A generalized framework is provided for

computing the amount of resources needed to support several services, without missing the deadline for any service.

An optimization formulation that uses a generic cost function is build. The multiple forms for the cost function (e.g.,

maximum, convex and concave functions) to reflect the different pricing options are implemented. The solution to

this formula gives the number of servers needed at different time instants to support these services. A simple logic

for time-shifting scheduled jobs in a simulator and study the reduction in server load using real traces from an

operational IPTV network is implemented. End results explain the load is minimized by ∼ 24%. There are

interesting open problems in designing mechanisms that allow time-shifting of load in such environments.

Keywords: Cloud Assets, IPTV Assistance

I. INTRODUCTION

As IP-based video delivery becomes more famous, the

demands placed upon the service provider’s resources

have rapidly increased. Service providers typically

provision for the peak demands of each service across

the subscriber population. Provisioning for peak

demands leaves resources under-utilized at all other

periods. This is particularly ensured with Instant

Channel Change (ICC) requests in IPTV.

In IPTV, Live TV is typically multicast from servers

using IP Multicast, with one group per TV channel.

Video-on Demand (VoD) is also supported by the

service provider, with every request being served by a

server using a unicast stream. When end users change

channels while watching live TV, we need to provide

extra functionality to so that the channel change takes

effect instantly. For each channel change, the user has

to join the multicast group associated with the channel

and wait for some time enough data to be buffered

before the video is displayed. As a result, there have

been many attempts to support instant channel change

by mitigating the user perceived channel switching

latency [1], [2]. With the typical ICC implemented on

IPTV systems, the content is delivered at a speeded up

rate using a unicast stream from the server. The series

of constituting a playoff buffer is filled quickly, and

this keeps switching latency small. When the play out

buffer is filled up to the play out point, the set top box

goes back to receiving the multicast stream.

ICC adds a demand that is proportional to the number of

users concurrently initiating a channel change event [1].

Operational data shows that there is a dramatic burst

load placed on servers by correlated channel change

requests from consumers (Refer Figure: 1). This results

in large peaks made on every half-hour and hour

boundaries and is often significant in terms of both

bandwidth and server I/O capacity. Currently, this

demand is served by a vast number of servers grouped

in a data center for serving individual channels, and are

scaled up as the number of customers increases.

However this demand is transient and typically only

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 119

lasts several seconds, possibly up to a couple of minutes.

As results, many of the servers dedicated to live TV sit

idle outside the burst period.

Our goal in this paper is to take advantage of the

difference in workloads of the different IPTV services

to better utilize the deployed servers. For example,

while ICC usage is very bursty with a large peak to

average ratio, VoD has relative manner in steady load

and imposes “not so stringent” delay bounds. Most

importantly, it offers opportunities for the service

provider to deliver the VoD content in anticipation and

potentially out of-order, taking advantage of the

buffering available at the receivers. We try to minimize

the resource requirements for supporting the service by

taking advantage of statistical multiplexing across the

different services - in the sense; we try to satisfy the

peak of the sum of the demands of the services, rather

than the sum of the large demand of each service when

they are handled independently. Virtualization provides

us the ability to share the server resources across these

services.

In this paper, Our aim a) to use a cloud computing

infrastructure with virtualization to dynamically shift

the resources in real time to handle the ICC workload, b)

to be able to anticipate the change in the workload

ahead of time and preload VoD content on STBs,

thereby facilitate the shifting of resources from VoD to

ICC during the bursts and c) solve a general cost

optimization problem formulation without having to

meticulously model each and every parameter setting in

a data center to facilitate this resource shift.

In a virtualized environment, ICC is managed by a set

of VMs (typically, a few VMs will be used to deliver a

popular channel). Other VMs would be developed to

handle VoD requests. With the ability to spawn VMs

quickly [3], we believe we can shift servers (VMs) from

VoD to handle the ICC demand in a matter of a few

seconds.

Note that by being able to predict the ICC bursts

(channel change behavior can be predicted from historic

logs as a result of live TV show timings. The channel

changes usually occurring every half an hour (see

Figure 1)). Figure 1 also shows the respective VoD load

and the aggregate load for both services together. In

anticipation of the ICC workload, we try to accelerate

delivery of VoD content (for example, for a very small

number of minutes of play out time) to the end users’

STBs and shift the VoD demand away from the ICC

burst interval (see Figure 2). Also this will be ensured

that VoD users will not notice any impairment in their

delivered quality of service (e.g. frozen frames etc.) as

the play out can be from the local STB cache.

Figure 1. LiveTV ICC and VoD Concurrent Sessions

(vs) Time, ICC Bursts Seen Every Half Hour

Figure 2. Live TV ICC and VoD Packet Buffering

Timeline

In preliminary work on this topic [4], we analyzed the

maximum number of servers that are needed to service

jobs with a strict deadline constraint. We also assume

non-causal information (i.e., all deadlines are known a

priority) of the jobs arriving at each instant. In this

paper, we kept in mind a generalized cost function for

the servers. The cost of the servers in this model can be

a function of time, load, etc. Our aim is to find the

number of servers at each time instant by minimizing

this generalized cost function while at the same time

satisfying all the deadline constraints.

The sever-capacity region formed by servers at each

time instant such that all the jobs arriving meet their

deadlines is identified, which is explained as: the region

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 200 400 600 800 1000 1200 1400
Time (min)

VoD
LiveTV

VoD + LiveTV

24942

11686

36324

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 120

such that for any server tuple with integer entries inside

this region, all the deadlines can be met and for any

server tuple with integer entries outside this region,

there will be minimum one request that misses the

deadline. Also we show that for any server tuple with

integer entries inside the server-capacity region, an

earliest deadline first (EDF) strategy can be used to

serve all requests without missing their deadlines. This

is an extension of the previous results in the literature

where the numbers of servers are fixed at all times [5].

The server-capacity region is formed by linear

constraints, and thus region is a polytypic.

Having identified the server-capacity region in all its

generality, we consider the cost function to be one of

several possibilities: a separable concave function and a

separable convex function, or a maximum function.

Note that even though the functions are concave/convex,

the possibility set of server tuples is all integer tuples in

the server-capacity region. This integer constraint leads

the problem hard, in general. Show that for a piecewise

linear separable convex function, an optimal strategy

that redues the cost function can be easily described.

This strategy only needs causal information of the jobs

arriving at each time-instant. For any concave cost

function, show that the integer constraint can be relaxed

since all the corner points of the server-capacity region

(which is a polytope) have integer coordinates. Thus,

best known concave programming techniques without

integer constraints can be used to solve the problem [6].

Finally, for a maximum cost function, seek to minimize

the maximum number of servers used over the entire

period. This paper explains a closed form expression for

the optimal value for the maximum number of servers

needed based on the non-causal information of the job

arrival process.

We show two examples of the cost function for

computing the number of servers in namely, the

maximum and piecewise linear convex cost functions.

Set up a series of numerical simulations to see the effect

of varying firstly and the ICC durations and secondly

VoD delay tolerance on the total number of servers

needed to accommodate the combined workload.

Findings indicate that potential server bandwidth

savings of (20% - 25%) can be realized by anticipating

the ICC load and thereby shifting/smoothing the VoD

load ahead of the ICC burst. Finally, shows by means of

a faithful simulator implementing both these services in

paper, that a careful choice of a look ahead smoothing

window can help to average the additional VoD load.

Our approach only requires a server complex that is

sized to meet the requirements of the ICC load, which is

no deadline flexibility, and paper explains can almost

completely mask the need for any additional servers for

dealing with the VoD load.

II. NUMERICAL RESULTS

Maximum Cost Function

A series of experiments is setup to see the effect of

varying firstly, ICC durations and secondly, VoD delay

tolerance on the total number of servers needed to

accommodate the added workload. All figures include a

characteristic diurnal VoD time series (in blue) and a

LiveTV ICC time series (in red). Based on these two

time series, the optimization rule described in computes

the minimum number of concurrent sessions that need

to be accommodated for the added workload. The

legends in each plot indicate the duration that each VoD

session can be delayed by the superposition of the

number of VoD sessions with a periodic synthetic

LiveTV ICC session.

The duration of the ICC session is set to be 15 seconds

(i.e. all ICC activity come in a burst and lasts for 15

seconds), the peak of the pulse is set to be the peak of

the VoD concurrent sessions for the entire day. We now

compute the total number of concurrent sessions that the

server needs to accommodate by delaying each VoD

session from 1 second to 20 seconds in steps of Five

seconds. It is observed that as VoD sessions tolerate

more delay the total number of servers needed reduce to

the point (15 sec delay) at which all ICC activity can be

accommodated with the same number of servers that are

provisioned for VoD thus resulting in 50% savings in

the server bandwidth.

If the VoD service can afford only 1 second delay and

then the total number of sessions that need to be

accommodated is roughly double. A similar effect, the

only difference here is that an operational trace is used

for LiveTV. Note that as VoD requests are delayed up

to 20 seconds the total server bandwidth reduce by

about 28% as compared to serving LiveTV and VoD

without any delay.

A. Convex Piecewise Linear Cost Function

Note how for different values of K allocates

substantially different number of servers. Simulates a

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 121

synthetic LiveTV ICC 15 sec pulse width of amplitude

≈ 12000 and an operational VoD measurement trace.

When K = 12500 the number of servers needed peak

with every incoming ICC burst (spaced 30 minutes

apart) and then bottom out at the VoD envelope (in

blue). If we use a smaller K, e.g. K = 10000, many

chunks will miss their deadlines (especially during the

peak hour) if total of K servers are used. A large

number of chunks have to be served with a higher cost

(red spikes of value 2.3×10
4
during the busy hour). The

number of chunks that need to be served with a higher

cost is larger when K is smaller. For K which is at-least

given all the requests can be served at the lower cost

and hence never are more than K servers needed, there

would be a chunk that misses deadline with K servers

and hence there will be at-least one chunk that is served

at higher cost. Reduce the value of K; high jobs need to

be served with higher cost. Portrays a similar story for

an operational LiveTV trace. With a smaller K value,

jobs are delayed to create larger overshoots (red spike

of value 3.6 × 10
4
).

III. SIMULATION

To demonstrate the efficacy of our proposal in the

realistic situation of supporting IPTV services,

implemented the adjustment mechanism in a custom

event-driven simulator. Customers request traces

were collected over 24 hours at a set of VHOs in

one state for both VoD and ICC. Our data more

than 18 million VoD and ICC requests in that time

period. Result shows that a substantial reduction (∼

24% for our traces) in peak server load by adjusting

the deadlines of VoD requests in anticipation of ICC

requests.

A. Experiment Setup

The simulator models the customers and the server

and represents by a simple small link, the complex

network that typically connects them. We view each

video as comprising of chunks. This is similar to

what most commercial streaming systems (e.g.,

HTTP Live Streaming, Smooth Streaming) employ

today. When a customer’s requests a video, it is

send the requests to the server and in response

identifies the chunks in video. Set each chunk to be

up to 30 seconds long. Each customer then requests

N chunks in parallel from the server. In our

experiments we nominally set N = 25. The server

then schedules these requests according to their

deadlines (i.e., the time by which the client should

have that chunk) and transfers it before the deadline.

Receiving a chunk, the client requests the next

outstanding chunk.

Each ICC request results in a request of one 15-second

chunk of video that has to be delivered immediately.

As observed in the traces, there is a sudden burst in

ICC requests every 30 minutes and lasts for a short

duration. Call this the ICC Burst Window. To minimize

the load due to these ICC bursts by advancing the

transfer of previously scheduled VoD requests. The

process can adopt is depicted in Figure. Assuming that

the ICC burst window lasts from time t+s to t+b, we

start the adjustment process at an earlier point, at time t.

In the window from t to t+s, which can call the

smoothing window, advance the jobs already scheduled

in the ICC burst window.

These jobs are served prior to their deadline. However,

in this system can make room for the increased number

of ICC requests expected in the burst window. As

results, these requests will result in some continued

VoD load during the burst window. One could however

implement a most sophisticated scheme when the

environment warrants it.

The reduction in load depends on multiple factors. First,

need to predict when the burst will occur. Next, need to

predict how long the burst’s effect will last (i.e., burst

window). We also need to predict how many VoD jobs

scheduled in the burst window have to be moved.

Finally, when start the adjustment process, its time

period for averaging the load (i.e., smoothing window)

also plays a key role.

Figure 3. Overview of the Job Adjustment Process

Study each of these effects in our experiments.

Assume that our ICC spike occur at fixed 30 minute

intervals. By default assume that our burst window is

one minute long, but also experiment with two minute

bursts. Typically assume that the adjustment starts 10

minutes before the burst window and that all the

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 122

scheduled VoD jobs are randomly adjusted over the

smoothing window. The smoothing window is also set

at ten minutes. Note that ideally want to use a larger

smoothing window than the burst window to spread out

the load imposed by the moved jobs; otherwise will

experience a spike in the load during the smoothing

window, thus negating the benefit of a procedure

somewhat. Primary metric is the number of concurrent

streams that servers have to serve. Use this as our

metric because it directly translates to how many

servers are required to support the total request load.

The peak number of concurrent streams is most

relevant because it give the minimum number of

servers required.

B. Establishing a Baseline

In Figure 1, shows separately plot the load due to

VoD requests only, ICC requests, and the combined

load for both VoD and ICC requests. Figure 1

explains that if we did not do any adjustment, would

need to support a maximum of 36324 concurrent

streams of VoD and ICC requests. If only supported

ICC requests, this goes down to 24942 streams. This

reduces further to 11686 streams considering VoD

alone. Recall the ICC requests result in 15 seconds

of data transfer and are served immediately (the

deadline is 0). Hence the best can do is to go down

to 24942 streams if we support both services are

able to mask the VoD service completely (a 31.33%

reduction). This gives us a baseline best case (lower

bound) to compare the performance of our proposed

adjustment mechanism.

Figure 4. Reduction in Load Due to Job Rescheduling

C. Rescheduling Jobs Reduces Load

For the main results, shows that rescheduling jobs to an

earlier deadline is indeed possible and that it can result

in a significant reduction in the aggregate load. Assume

an ICC burst window of one minute and a smoothing

window of ten minutes. Also assume that all the VoD

jobs prior to the burst window are moved to the

beginning of the smoothing window.

The inset in Figure 10 explains the trends for the whole

day. This paper plot peak period for the day (the first

Four hundred minutes, marked by the shaded region in

the inset) during which the peak number of streams are

served. The result of this experiment presents that with

the adjustment are able to bring the peak number of

concurrent streams down from 36324 streams to 27813

streams, a ∼ 24% reduction. This number is close to the

load due to ICC requests alone, indicating that have

successfully moved all the VoD requests are needed to

making way for the ICC burst to be served in the burst

window.

While this is a substantial reduction, it is lower than the

possible 31% reduction. This Paper attribute the lower

gain to the way exercise the time-shifting of the VoD

load. Recall the adjustment of serving VoD requests is

done at the start of the smoothing window. Any VoD

requests that arrive after the adjustments are initiated

cannot be rescheduled and results in load during the

burst window as well. With a 10 minute smoothing

window, see quite a few of the new VoD requests after

the adjustment is complete. To understand this

interaction better, study the effect of varying the size of

the smoothing window next.

D. Effect of Smoothing Window Size

The smoothing window size determines how the VoD

load from the burst window is distributed. Selecting a

small smoothing window results in more accurate

determination of how many scheduled VoD jobs exist,

but can result in a load spike within the smoothing

window. On the other way a large smoothing window

allows us the average the VoD load from the burst

window better, but prevents the re-scheduling of many

new VoD sessions that arrive subsequently. In this

paper quantify the effect of the smoothing window,

while keeping the burst window at two minutes. VoD

jobs are shifted from those two minutes.

Interestingly, see that at the peak (around the 180

minute time marker), using a Five minute

smoothing window results in better performance

than a Ten minute smoothing window (26979 vs.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 100 150 200 250 300 350 400
Time (min)

Original Server Load
Load with Adjustment

 0
 10000
 20000
 30000
 40000

 300 600 900 1200

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 123

27813 streams). In this paper attribute the

improvement to the ability to reschedule more VoD

streams because of the smaller smoothing window.

It is not as simple as just employing a smaller

window. When reduce the smoothing window

further, to two minutes, the load is consistently

higher than the other windows. Even more

importantly, the ten minute smoothing window

consistently outperforms the others outside the peak

viewing period. This is because at the peak period,

the number of ICC requests are significantly higher

than the VoD requests. This moving as many VoD

requests as possible is important. At other ways, the

number of VoD requests is higher. This moving all

the VoD requests to an earlier deadline increases the

load at that time of event. This is significant; it tells

us that need a more sophisticated approach to

predicting the load in a burst and in selecting the

size of the smoothing window.

E. Effect of Burst Window

Understanding the burst window is important as it

tells us how long the burst is going to last. We study

the effect of the size of the burst window by

changing the burst window from 1 minute to 2

minutes, while keeping the smoothing window fixed

at 10 minutes. We present the result in Figure 12.

Interestingly, we see that the size of the burst

window has only a small role to play during the

peak. This is because the majority of the load during

the peak comes from ICC requests and the new

VoD sessions. However we see that outside the

peak interval, using a smaller burst window results

in lower load. This again can be attributed to the

fact that the load in these periods is primarily due to

VoD and moving more jobs (like we do with the 2

minute burst windows) is counterproductive. Finally,

we see sharp reductions in load after the burst

window of 2 minutes, but not with a burst window

of 1 minute. This is again because we have moved

many more VoD jobs than necessary.

F. Probabilistically Moving Jobs

The burst window tells us the interval from which we

need to move the VoD jobs, and the smoothing

window gives us the duration over which we may

schedule them. However, we also need to know how

many jobs to move. To capture this, we

probabilistically moved jobs to the smoothing window.

We set the smoothing window at 10 minutes and the

burst window at 2 minutes but varied the probability p

of moving a job from 0.25 to 1.0 and plot the result in

Figure 13. We note some interesting behavior. First,

during the peak (marked with ’1’), we see that

increasing the probability of moving jobs decreases

the number of concurrent streams. However, at other

times (marked with ’2’), decreasing the probability

decreases the concurrent streams. This result clearly

shows that we need a smarter way of figuring out how

many jobs to move for this procedure to be applicable

in a general.

G. Results Summary

In this section, results are presented from a simple

adjustment mechanism. Our results show that even our

simple mechanism is able to give significant reductions

in load. However, there is still room for improvement.

We showed that the load reduction is dependent on the

duration of the adjustment (burst window), the number

of jobs moved and the period over which they are

averaged (the smoothing window). Our results show

that a particular value for each of these parameters is

not the best across the board; instead the value chosen

depends on the relative load of each of the services

being adjusted. We believe that mechanisms to predict

this relative load of each service and dynamically

choose values for the parameters based on this

prediction can yield further improvements. Designing

such mechanisms is an opportunity for interesting

future work.

IV. CONCLUSION

We studied how IPTV service providers can

leverage a virtualized cloud infrastructure and

intelligent time-shifting of load to better utilize

deployed resources. Using Instant Channel Change

and VoD delivery as examples, we showed that we

can take advantage of the difference in workloads of

IPTV services to schedule them appropriately on

virtualized infrastructures. By anticipating the

LiveTV ICC bursts that occur every half hour we

can speed up delivery of VoD content before these

bursts by prefilling the set top box buffer. This helps

us to dynamically reposition the VoD servers to

accommodate ICC bursts that typically last for a

very short time.

Our paper provided generalized framework for

computing the amount of resources needed to

support multiple services with deadlines. We

formulated the problem as a general optimization

problem and computed the number of servers

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 124

required according to a generic cost function. We

considered multiple forms for the cost function (e.g.,

min-max, convex and concave) and solved for the

optimal number of servers that are required to

support these services without missing any

deadlines.

We implemented a simple time-shifting strategy and

evaluated it using traces from an operational system.

Our results show that anticipating ICC bursts and

time-shifting VoD load gives significant resource

savings (as much as 24%). We also studied the

different parameters that affect the result and show

that their ideal values vary over time and depend on

the relative load of each service. Mechanisms as

part of our future work.

V. REFERENCES

[1] D. Banodkar, K. K. Ramakrishnan, S.

Kalyanaraman, A. Gerber, and O. Spatscheck,

“Multicast instant channel change in IPTV

system,” in Proceedings of IEEE

COMSWARE, January 2008.

[2] “Microsoft TV: IPTV edition,” from the

website

http://www.microsoft.com/tv/IPTVEdition.ms

px.

[3] H. A. Lagar-Cavilla, J. A. Whitney, A.

Scannell, R. B. P. Patchin, S. M. Rumble, E.

de Lara, M. Brudno, and M. Satyanarayanan,

“SnowFlock: Virtual Machine Cloning as a

First Class Cloud Primitive,” ACM

Transactions on Computer Systems (TOCS),

2011.

[4] V. Aggarwal, V. Gopalakrishnan, R. Jana, K.

K. Ramakrishnan, and V. Vaishampayan,

“Exploiting Virtualization for Delivering

Cloud-based IPTV Services,” in Proc. of

IEEE INFOCOM (mini-conference), Shanghai,

April 2011.

[5] J. A. Stankovic, M. Spuri, K. Ramamritham,

and G. C. Buttazzo, Deadline Scheduling for

Real-Time Systems: Edf and Related

Algorithms. Norwell, MA, USA: Kluwer

Academic Publishers, 1998.

[6] N. V. Thoai and H. Tuy, “Convergent

algorithms for minimizing a concave function,”

in Mathematics of operations Research, vol. 5,

1980.

[7] R. Urgaonkar, U. Kozat, K. Igarashi, and M. J.

Neely, “Dynamic resource allocation and

power management in virtualized data centers,”

in Proceedings of IEEE IFIP NOMS, March

2010.

[8] C. L. Liu and J. W. Layland, “Scheduling

Algorithms for Multiprogramming in a Hard

Real Time Environment,” Journal of the ACM,

vol. 20, no. 1, pp. 46–61, 1973.

[9] A. Dan, D. Sitaram, and P. Shahabuddin,

“Scheduling Policies for an On-Demand

Video Server with Batching,” in Proc. of

ACM Multimedia, San Francisco, CA,

October 1994, pp. 15–23.

[10] A. J. Stankovic, M. Spuri, K. Ramamritham,

and G. Buttazzo, “Deadline Scheduling for

Real-Time Systems EDF and Related

Algorithms,” 1998, the Springer International

Series in Engineering and Computer Science.

[11] L. I. Sennott, Stochastic Dynamic

Programming and the Control of Queueing

Systems. Wiley-Interscience, 1998.

[12] D. P. Bertsekas, “Dynamic Programming and

Optimal Control,” in Athena Scientific,

Blemont, Massachusetts, 2007.

[13] G. Ramamurthy and B. Sengupta, “Delay

analysis of a packet voice multiplexer by the

ΣDi/D/1 Queue,” in Proceedings of IEEE

Transactions on Communications, July 1991.

[14] H. Tuy, “Concave programming under linear

constraints,” Soviet Math 5, pp. 1437–1440,

1964.

[15] S. Sergeev, “Algorithms to solve some

problems of concave programming with linear

constraints,” Automation and Remote Control,

vol. 68, pp. 399–412, 2007,

10.1134/S0005117907030034. [Online].

Available:

http://dx.doi.org/10.1134/S000511790703003

4

