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ABSTRACT 

 

Linear Regression is perhaps one of most well-known algorithms in statistics and Machine Learning. Despite its 

widespread use in machine learning applications, the importance of testing the assumptions of linear regression 

is often trivialised in machine learning literature. However, the predictions of linear regressions cannot be 

trusted unless its assumptions are met. An attempt has been made to attract the attention of the community 

towards this understated aspect of putting linear regression into practice. This paper serves as an endeavour to 

shed some light on ways to test the assumptions of linear regressions and how to remedy the violations if there 

are any. 
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I. INTRODUCTION 

 

Linear Regression is often the very first algorithm to 

be taught in any machine learning curriculum. The 

algorithm, which is borrowed from statistics models 

the variable we are trying to predict (called the target 

variable) as a weighted linear combination of one or 

more inputs variables. Despite its simplicity, it has 

been deployed across a vast array of real life problems 

including forecasting stock market trends [1], 

weather forecasting [2], analysis of automobile engine 

performance [3], optimising targeted advertising [4] 

to name a few. The vanilla version of algorithm 

works by minimising the least squares function, and 

the performance is judged by the value of the 

Pearsons coefficient of correlation [5], also referred to 

as R-squared value (Adjusted R-square for model 

having multiple input variables. In this paper, 

whenever we come across the term R-squared, it is to 

be understood we mean adjusted R-squared in case of 

multiple input variables) 

However, most of the machine learning practitioners 

often focus on squeezing as much predictive power as 

they can out of a model, and are often less concerned 

about the explanatory power of the features used as 

input. It is also to be noted that the predictions of the 

model can be trusted only if the assumptions of 

algorithm are satisfied. In case they are violated, the 

evaluation metrics, however stellar they might be, are 

no guarantee for the effectiveness of the model. 

Hence, it is absolutely fundamental that these 

assumptions should be rigorously tested while 

evaluating the performance of Linear Regression. 

Though these techniques are well documented in 

statistics literature [6], their coverage in machine 

learning literature leaves much to be desired. 

 

The object of this paper is to attract the attention of 

the community over emphasising the need to test 

these assumptions, and consequently incorporating 

methods to fix the violations, if any. This paper is 

divided into five parts. First, we start by laying a 

theoretical framework of Linear Regression that helps 
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the reader appreciate why the assumptions are so 

crucial to the assessment of the model. Second, we 

perform ordinary least squares regression on Google 

Stock data from the past ten years. Third, we explore 

ways to test for the violations of the assumptions and 

how to fix them. Fourth, we will apply these 

techniques to fix the violations made by our model 

and contrast the performance of the new models with 

the previous one. Finally, we put forth our 

concluding remarks, and explore the options of using 

methods other than Linear Regression (LR). 

II. THEORETICAL FRAMEWORK 

 

Given training examples (X, Y), LR tries to establish a 

linear relationship between the inputs x(i) ∈ X and 

their corresponding labels (value of target variable) y(i) 

∈ Y such that 

y(i) = θTx(i) + ε(i) (1) 

where θ is the weights vector that parametrises the 

model, and ε(i) is the error term that captures either 

the unmodelled effects (such as features pertinent to 

predicting target variable that we failed to include in 

our model), or random noise. 

 

Assumptions of Linear Regression 

1) There exists a linear relationship between target 

variable and each of the input variables. The 

weights, θi0s ∈ θ associated with each variable are 

independent of each other. The effects each the 

input variable has on the target variable are 

additive in nature. 

2) The errors ε(i)s exhibit homoscedasticity or 

constant variance against time, the target 

variable as well as the input variables. 

3) The errors, ε(i)s are independent and identically 

distributed (IID). 

4) The errors ε(i)s are normally distributed with 

mean zero and variance σ2. 

Loss Function 

Using assumption (4), we can write the probability 

density of ε(i) as: 

  (2) 

This implies that 

 

The above equation represents the probability density 

of an arbitrary y(i) given a x(i) and is parametrised by θ. 

This function, called the likelihood function, depends 

on θ. We then move to choose a value of θ that 

maximises the value of this function. This will give us 

a model that agrees best to our training data. 

 

The joint probability density for the training set can 

be simply written as the product of probability 

densities of each training examples, as we have 

assumed them to be IID (assumption 2). Since we 

have assumed errors exhibit homoscedasticity, all of 

them share a common variance σ2 

 

The likelihood function for the training set could 

then be written as 

  (4) 

  (5) 

Taking log on both sides of (5) and simplifying it can 

be shown that maximising likelihood is same as 

minimising the equation. 

  (6) 

This is the standard least squares loss function we 

minimise during training in LR. The objective of the 

above treatment was to show how assumptions of LR 

factor into derivation of the loss function. 

 

Predicting Google’s stock price 

LRs is often used for predictive analysis of trends in 

stock markets. We have picked a simple problem 
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where we will use LR for predicting the stock price of 

Google using the data from the past 10 years. Our 

goal is to predict the closing price of the stock. The 

data has been acquired from Quandl, an online 

platform that hosts financial data. The input features 

include opening price (Open), highest price (High), 

lowest price (Low), Closing Price (Close), Volume 

Traded (Volume), Ex-Dividend, Split Ratio, Adj. 

Open, Adj. High, Adj. Low, Adj. Close, Adj. Volume 

collected 10 days prior to the day for which the 

prediction has to be made. The adjusted ones account 

for stock splits (One stock becomes two, and the 

value of each stock is halved), whereas the regular 

ones do not, so we are going to drop those features. 

We’ll now refer to the Adjusted features without 

the ”Adjusted” prefix. 

Feature selection 

We are going to limit the feature selection process to 

dropping all but one amongst the sets of highly 

correlated features, though feature selection forms 

one of the most critical parts of the model training 

process, we are not going to dwell too much on it 

here for sake of focusing on the main topic of the 

paper. 

Table 1. Correlation Matrix For Input Features 

 Open High Low Close Volume 

Open 1.0000 0.9999 0.9998 0.9997 -0.5599 

High 0.9999 1.0000 0.9998 0.9999 -0.5583 

Low 0.9998 0.9998 1.0000 0.9999 -0.5630 

Close 0.9997 0.9999 0.9999 1.0000 -0.5608 

Volume -

0.5599 

-

0.5583 

-

0.5630 

-

0.5608 

1.0000 

 

By looking at Table 1 we can clearly see Open, High, 

Low, Close are highly correlated. Let us drop all of 

them but Close variable while training our model. 

We have also dropped Volume to keep things simple 

in accordance to the principle of Occam’s Razor. We 

will test another model later which has Volume later 

in the paper. 

Model Evaluation  

Table 2. Model Evaluation Metrics 

 weight Std err t-statistic P-value 95.0% 

Conf. Int. 

Intercept 4.8595 1.292 3.761 0.000 [2.326 

7.393] 

Close 0.9641 0.003 294.316 0.000 [0.958 - 

0.971] 

Adjusted R-squared: 0.966 

 

This model achieves a Adj. R-squared of 0.966. A lot 

of ML practitioners may take it as a conclusive proof 

of the high efficiency of the model. However, we 

could also look at the 95.0% Conf. Int or the 

confidence Intervals for the weights. These are the 

values which a particular weight may take about 95 

out of every 100 times we randomly sample the data 

from a population and fit the model to it. One should 

be alarmed if zero also falls in the confidence interval 

of a weight. This could suggest that there’s a 

considerable probability that the value of the weight 

is zero, which implies there’s no relationship between 

the feature and our target. Another metric that can 

tell us about such a problem is the p-value. It 

basically measures the likelihood of our data, given 

the null hypothesis that the weight is equal to zero. 

In other words, it measures whether the relationship 

we observe is merely a statistical fluke. born out of a 

sampling error 
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Since we’re using 95% confidence intervals, the p-

value for all the coefficients must be less than 0.05 [7]. 

We could also look at the T-statistic, which measures 

the number of standard deviations a weight 

distribution’s mean is away from zero. Typically, for 

95% confidence intervals, T-value should be more 

than 2 in magnitude. The current model fulfils all the 

above criteria. High value of R-square, all the p-

values below 0.05, and all the t-values above 2. 

 

At this point the reader might be edging towards 

concluding the model does a very good job 

generalising to the dataset. However, we now 

proceed to check whether the assumptions of LR are 

violated or not. 

 

Testing the assumptions of LR 

Assumption of Linearity 

The very premise of testing this assumption can be a 

tricky bargain. Assuming that there is indeed a linear 

relationship between the target and the input 

variable forms the core of our belief that LR is a 

suitable choice to solve the problem at hand. If we 

are willing to test this assumption, it means we are 

ready to consider the case where a linear relationship 

might not hold, which in turn renders this complete 

analysis redundant. One might even think that this 

assumption is merely a leap of faith. However, in 

practical cases, such assumptions are often backed by 

domain expertise and guiding principles like the 

Occams razor. 

 

In fact, a lot of ML practitioners believe a good 

measure of whether this assumption holds is the R-

squared itself. However, R-squared is merely the 

percentage of the target variable variation that is 

explained by the straight line we have fit. It only 

describes how well are the input and the target 

variables correlated. It does not confirm a causal 

relationship between the target variable and the 

input variables. Thus, R-squared cannot be solely use 

to establish our assumption. R-squared simply tells us 

the quality of the linear relationship, assuming a 

linear relationship does exist. 

 
Figure 1. Errors v/s Predicted Values plot for the 

Google Stock price Model with only Close as the 

input variable 

 
Figure 2. Errors v/s Predicted Values plot for a LR 

model with only x as the input variable. The dataset 

has a non-linear (quadratic) relationship between the 

inputs and the labels, described by y=x2+10x 

 

How to diagnose: Non-linearity can be detected by 

plotting errors vs the predicted values of the target 

variable. Figure 1 shows the error v/s predicted values 

plot for our model. 

 

In Figure 1, we see the errors roughly have a zero 

mean, and are randomly distributed around the mean. 

This makes a strong case for the assumption of 

linearity. The reader may recall that error term is 

attributed to unmodelled effects, as well as random 

noise. Had we tried to model a non-linear 

relationship using LR, the non-linear effects of input 

variables would have showed up in error term. In 

such a case, errors would have been systematic in 

nature. 

 

http://www.ijsrcseit.com/


Volume 2, Issue 7, September - 2017  |  http:// ijsrcseit.com  

 
 20 

To get a better insight let us use LR on a dataset 

having a non-linear (quadratic) relationship between 

the input and the target variable, described by y = x2 + 

10x. Figure 2 shows  

 

Figure 3. Predicted values v/s errors for a LR model 

with x and x2 as the input variables. The dataset has a 

non-linear (quadratic) relationship between the 

inputs and the labels, described by y=x2+10x 

what the Errors v/s Predicted Values plot looks like 

when we fit a LR model to the dataset. 

Remedy: The very first thing one can do is try to 

apply a non-linear transformation to one or more 

variables to linearise the relationship. For example, if 

the target variable is an exponential function of the 

inputs, applying log transformation to the input 

variables will linearise the relationship. If a small 

percentage changes in one or more input variables 

induces a proportionate percentage change in value of 

the target variable, the relationship between the 

inputs and the target variable is a multiplicative one. 

In such case, a log transformation may be applied to a 

both the input and the target variables. 

 

One can also try to add another input variable which 

is simply a non-linear transformation of one of the 

input variables used in the model. However, such 

methods could often lead to overfitting, and 

reguarisation must be used appropriately. One can 

also come up with a new variable that is a 

combination (for example, product) of two or more 

input features used in the model. The cusp of 

engineering a new input variable to to account for 

any unmodelled effects. 

 

Assumption of homoscedasticity 

This assumption can be tested by looking at the plots 

of errors vs the predicted value of the target variable, 

as well as the errors v/s time plot, shown in figure 4 

in case of a time series data. By looking at figure 1, we 

can easily conclude that this assumption is violated as 

the errors do not have a constant variance across 

different values of the predicted variable. In 

particular, the variance seems to increase as the 

predicted value of the target variable increases. 

 

Again, the violation of this assumption is very evident 

as we observe the errors do not exhibit a uniform 

variance. 

 

 
Figure 4. Errors v/s Time plot for the Google Stock Price Model with only Close as the input variable 

 

Remedy: If the target variable can take only positive 

values and variance of the errors increases, probably 

proportionately, as the predicted value of the target 

variable increases, applying a log transformation to 

the target variable may stabilise the variance of the 

errors. Such a transformation helps because such sort 

of errors are consistent in terms of percentage growth, 

rather than absolute terms. Heteroscedasticity can 

also arise owing to violations of the assumptions of 

linearity and/or independence, in which case it may 

be fixed as a 
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Table 3. Model Evaluation Metrics 

Lag 1 2 3 

Autocorrelation 0.973 0.946 0.920 

 

consequence of fixing those problems. 

In case of time-series data, one may also note a 

periodic trend in the variances of errors. The variance 

of errors maybe roughly uniform for periodic 

intervals. Such a problem may be solved by 

introducing an additional variable in our model that 

accounts for seasonal patterns. It maybe also the case 

the we deal with larger values for some of our input 

variables in some particular part of the season 

resulting in errors of larger magnitude. In that case 

too, applying a log transformation to target variable 

can help solve the issue. 

Assumptions of Independence 

This assumption can be tested by the use of a errors 

v/s time plot, shown in figure 4. This assumption is 

clearly violated in plot shown in figure 4. We 

conclude this by observing that positive errors are 

followed by positive errors, and negative errors are 

followed by negative ones for long intervals. This 

idea can be captured more formally by a 

mathematical quantity called autocorrelation.  

 
Figure 5. Error histogram for the Google Stock Price Model with only Close as the input variable 

 

Autocorrelation is basically the serial correlation 

between the errors separated by a fixed amount of 

time interval (called the lag). The autocorrelations for 

most lags should fall between  , where n is 

the size of the training set. (0.035 for our model). The 

autocorrelation for errors of our model are given in 

the table are shown in table 3. This assumption of LR 

is clearly violated as autocorrelations of our model are 

away above the threshold that must be adhered to. 

 

Remedy: Mild cases of autocorrelation maybe 

addressed by adding a time-lagged version of either 

the target or one of the input variables. If there’s 

significant autocorrelation at the lag n, one can use a 

variable lagged by n time intervals to address the 

issue. There might be seasonal autocorrelation in time 

series data, wherein errors belonging to the same 

season may be correlated. A seasonally lagged 

variable can be added to the model to address this 

issue. 

Assumption of Normality 

This assumption can be simply tested by plotting a 

histogram of errors. The histogram of errors of our 

models are shown in figure 5 The reader can see the 

distribution is not perfectly normal, and seems a bit 

negatively skewed. Violations of this assumptions 

arise to due to non-linearity, or the presence of 

outliers. 

Remedy: Most of the techniques that remedy non-

linearity remedy the violation of this assumption too. 

A non-linear transformation of variables is often 

sought as the cure to this problem. As far as the 

question of outliers go, one must ponder over the 
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question of keeping them in the training dataset or 

not. To resolve that issue, we must ask ourselves 

whether they denote merely a statistical fluke or do 

they represent rare phenomenon which could repeat 

itself in future. 

Figure 6. Predicted v/s Error plot for model having 

Close and Volume as input variables 

5. Fixing violations of assumptions in Google Stock 

Data Model 

Our model fares well on the assumption of linearity 

as we observe the errors are randomly distributed 

about the zero mean line in figure 1. However, we 

had omitted the Volume input variable in our model. 

We could try a model having Volume as an additional 

input variable to see if we can get better results on 

the linearity front. The errors v/s predictions graph is 

plotted in figure 6. We see no considerable 

improvements and hence, we stick with our earlier 

model in spirit of keeping the model simple. 

 

As seen in figure 1 and 4, the assumption of 

homoscedasticity is clearly violated. In figure 1, we 

see 

 
Figure 7. Error vs Time plot for model with Close as 

input and logged target variable 

 

that the variance of errors increases as the value of 

the stock price increases. It maybe also noted a 

similar trend is noted in figure 4, where the variance 

grows as we progress through time (It can be 

observed that the stock price has risen as we proceed 

through time too). Such a violation suggests errors are 

consistent in percentage rather than absolute value. 

As suggested, earlier we apply a log transformation to 

our target variable. Figure 7 shows the errors v/s time 

plot,  

 
Figure 8. Error vs Time plot for model with logged Close as input and logged target variable 

 

 

which shows improved homoscedasticity of errors in 

general except a bunch errors of higher variance in 

the beginning. 

 

Interestingly, it’s a practical observation that stock 

prices grow with almost constant percentages over 

time, and we might even try to test a model with 

both the target as well as the input variable logged 

(Since Close is also a measure of stock price). 

However, it would mean that effect of the input 

variables is multiplicative rather than additive on the 

target variable, that is, a small percent change in the 
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input induces a proportionate percentage change in 

target variable. Figure 8 shows the error-vs-time plot 

which exhibits improved homoscedasticity with 

lesser autocorrelation (still alarmingly high). So, we 

ditch earlier model for this one now. 

 

Table 4. Model Evaluation Metrics 

Lag 1 2 3 

Autocorrelation 0.008 -

0.003 

-

0.019 

 

Autocorrelation is still a big problem with our models. 

One of the ways to fix autocorrelation is to add a 

lagged variable of our target function (Note, that now 

we’re referring to a model where we have logged 

both the target and the input variables). The reader 

might have noted that the only input variable in our 

model is Closed is nothing but the value of our target 

value ten days prior to the day for which we want to 

make our prediction. However, it is advisable to 

arrest autocorrelation at the smallest lag as possible in 

order to prevent it from percolating to higher lags as 

well. We find significant autocorrelation at lag 1, and 

thus add a variable, which is nothing but the target 

variable lagged by one day. When we plot the Error 

vs time graph, as shown in the figure 9, we see that 

the auto-correlation has significantly improved. This 

fact is confirmed by the autocorrelation figures 

shown in Table 4. 

 

Figure 9. Error v/s Time plot for model with logged 

Close and 1-lagged target variable as input and logged 

target variable 

 

We plot an error histogram in figure 10, and the 

normality assumption is much more appropriately 

satisfied than figure 5. As mentioned earlier, the 

assumption of normality, if violated, is often 

remedied as a by-product of addressing the other 

violations. The evaluation metrics for our current 

model are listed in Table 5 

 

Table 5. Model Evaluation Metrics 

 weight Std err t-statistic P-value 95.0% 

Conf. Int. 

Intercept 0.0007 0.003 0.195 0.845 [-

0.0060 .008] 

log(Close) 0.0319 0.003 10.555 0.000 [0.026 

0.038] 

log(lagged) 0.9679 0.003 323.678 0.000 [0.962 

0.974] 

Adjusted R-squared: 0.999 
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Figure 10. Error histogram for model with logged 

Close and 1-lagged target variable as input and logged 

target variable 

 

III. CONCLUSION 

 

So far, we have built a LR model that gives stellar 

results on the standard evaluation metrics. However, 

as we tested our model for violations of assumptions 

of LR, we found that assumptions of homescedasticity 

and independence were seriously violated. The 

assumption of normality was also violated to a lesser 

extent. We then applied appropriate steps to address 

the issues. 

 

It may be noted that even though we came up with a 

model that agrees with the assumptions, the results 

are far from perfect. In fact, there are a couple of 

anomalies observed throughout our graphs that need 

to be addressed. We see that even after applying 

remedying the violations, we observe errors of very 

high variance in the beginning of the 10-year period, 

where the value of the stock price was relatively 

small. We also see high variance around 2008, which 

can be attributed to sudden steep dip in stock prices 

owing to the 2008 financial prices. 

 

These anomalies may simply be outliers that may be 

removed from the data. But we must ask ourselves 

whether the outliers simply represent statistical 

flukes or some rare phenomenon that should be 

accounted for nonetheless. An example is the 

possibility of a financial crisis happening like one 

happened in 2008. The crisis was bought about by the 

liquidity in USA housing market, and therefore it 

more or less becomes a matter of domain expertise in 

deciding what our input features should be. It must 

be noted that the purpose of our analysis was not to 

build a high quality model, but merely to 

demonstrate how violations of assumptions of LR can 

be detected and fixed. 

 

Finally, we may even conclude that perhaps LR may 

not be the best method to attack the problem. For 

example, there are many intricacies of modelling 

stock markets that are far beyond the capabilities of 

LR. Stock markets are often prone to periods of high 

and low volatility. This might be the very reason we 

see high variances in the beginning. This is normal 

and is often addressed by using ARCH (auto-

regressive conditional heteroscedasticity) models 

wherein the error variance is fitted by an 

autoregressive model [8]. 

 

One of the great difficulties with modelling Stock 

prices with LR happens to be related to the 

assumption of independence. In the derivation of the 

loss function, we assumed our training examples are 

IID. However, that is quite not the case in real life. A 

stock’s price on a particular day may be effected by its 

performance during previous days or months. In such 

a case, one might think of applying a model which 

takes into account the effect of the previous values of 

the target variable into consideration while trying to 

model its current value. Recurrent Neural Networks 

are one such example and have shown immensely 

better results when used for this task [9] 

 

However, this does not discount the value of LR as a 

valuable modelling tool in any way. The simplicity of 

LR helps it dodge the curse of overfitting [10] which 

is one of the biggest problems while training a model 

in machine learning. Even if one can get past the 

problem of overfitting in complex models, they can 

often lack the explanatory power of LR. For instance, 

while using non-linear regression, we can no longer 

calculate p-values, and confidence intervals are not 

guaranteed to be calculable, making it hard to 

interpret the explanatory power of input variables. 

Even if LR is not well-suited to attack the problem, it 

can give us valuable insights which may be used later 

while testing complex models. 
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