
CSEIT174438 | Published : 30 September 2017 | September - 2017 [2 (7) : 316-322]

International Conference on Machine Learning and Computational Intelligence-2017

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 7 | ISSN : 2456-3307

316

Optimization of Worst-Case Execution Time for ASIP using

Genetic Algorithm
Mood Venkanna*1, Rameshwar Rao2, P. Chandra Sekhar3

1Department of ECE, UCE, Osmania University, Hyderabad, India
2Former VC JNTUH, Department of ECE, UCE, Osmania University, Hyderabad, India

3Professor, Department of ECE, UCE, Osmania University, Hyderabad, India

ABSTRACT

The use of Application Specific Processor is available almost in all the areas. Research and developments on

ASIP has been progressed since last two decades. However, the minute analysis of these processors is still a

great challenge for the engineers and researchers in current scenario. Embedded processor application spread

over different areas with a high desire of fast and accurate execution. It requires enhancing the execution time

of the processor. The worst-case execution time (WCET) evaluation satisfies the desire of user end along with

the hardware and software application of the processor. As a result the reconfiguration of processor

architecture can be modified and perfect task scheduling can be performed. For WCET, upper bound on

execution time is to be focused. An attempt is made to optimize the WCET to enhance the performance of the

processor along with less occupation of space. Genetic Algorithm (GA) as the popular optimization technique is

utilized to optimize that can help to the reconfigurable processor performance and also the control flow of the

instruction to the processors.

Keywords : Embedded processor, ASIP, Optimization, Genetic Algorithm, WCET.

I. INTRODUCTION

An embedded system relies on Application-specific

instruction set processor (ASIP) design to meet its

desired performance and cost effectiveness.

Additionally, these processors found useful in cellular

phones, avionics, automobile control systems etc. in

which a slight change in performance or cost may

impact drastically the productivity. There are

different ASIP designs available such as Co Ware Lisa

Tek products, TensilicaXtensa processor, Target

Compiler Technologies products and Xilinx Micro

Blaze. These ASIPs remain sole solution for the

physical constraints and for the desired functions due

to programmability and high flexibility. This paper

will provide a brief explanation how the ASIP

systems can be improved further.

Program Execution time is a crucial component in

any real-time system as it may result in

catastrophically consequences in case the deadline is

missed. The worst execution time measurements

using the worst possible program input remains

unreliable today. Further, a program’s worst

execution path may not be not captured during the

measurements. A number of researches in WCET

(Worst Case Execution Time) analysis and

theoretically estimate of WCET models has been

conducted during last few years (Asavoae,M.et.al.,

2013, Cl´ementBallabriga et al., 2010, Banerjee,A.,

et.al. 2013, Armin Biere et al., 2013) . However,

http://ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 317

application of actual real-time operating system code

models has been least considered.

In embedded systems, WCET of a program need to be

less than a specific threshold particular important in

case of synchronous active control loops (Bjørner,N.

Dutertre,B. and Moura, L., 2008). For a program, the

WCET is computed as a combination of low-level,

micro architectural reasoning. This involves pipeline,

busses, cache states, cycle-accurate timing as well as

higher-level reasoning such as the loop counts,

program control flow and the variable pointers. It

requires application of abstract interpretation with

respect to the micro architecture, deduce elementary

block’s worst case timings and reassemble to global

WCET using the control flow, maximal iteration

counts by means of integer linear programming

(Cadar, C. et. al, 2008).

In this paper, static method is optimized using

genetic algorithm. The control flow and the path

analysis is the major focus for optimized WCET. Rest

of the paper is organized as the subsections for

technique of WCET that follows the optimization

method. Next to it the result has been explained.

Finally it concludes this piece of wok.

II. TECNIQUES OF WCET AND THE MODEL

WCET has been used in many real-time systems due

to safety, reliability, and surfacing of software in

automotive systems. It serves as an input to schedule

ability analysis in system design. Few of the

automated approaches for WCET computation

includes:

 Analytical techniques for test cases that boost

the confidence for end to end measurements

 Static analysis of the software.

 combined or hybrid approaches that include

both measurements and structural analysis

 Worst-case path determination

a. Maps control flow graph to an integer linear

program

b. Determines upper bound and associated path

For accurate WCET computation the possible

program flow involving function calls and loop

iterations including their effects corresponding to

hardware features need to be known.

WCET calculation:

For program average-case execution time

improvement modern processors contains features

such as order execution and cache hierarchies

(Chattopadhyay, S., and Roychoudhury, A., 2013,

Chu, D., and Jaffar, J., 2011, Wilhelm, R., 2006,

Reinhard Wilhelm et al., 2008). Nevertheless, for

atight WCET, these features make the system

complex. Addition of more complex architectures in

model checker increases the number of states which

makes the track more prone to state explosion

problems. However, availability of sophisticated tools

like as Chronos cangues a better running of WCET in

single core processors (Chaki, S., and Ivers, J., 2010).

On the other hand, Multi core systems posses an

additional complexity because of the shared resources

or shared memories. Use of shared memory makes

problems to obtain tight WCET.

Finding a method for WCET involve approximations

thus, the exact WCET can be regarded as

unachievable (Wankang Zhao et al., 2006, Kim, S.K.

et.al.,1996, White,R., et.al.,1997, Colin, A. et.al.,

2000)]. Finding the WCET are based on estimates

which may be pessimistic. In such cases, the

estimated WCET believes to be higher than the

corresponding real or desired WCET. Hence, mostly

in WCET analysis an attempt is made to reduce the

pessimism with a low enough estimated value that

can be of real interest to the system designer.

Static methods takes the task code in hand and do not

depend on the executing code involving on a

http://www.ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 318

simulators or hardwares. Together with some

annotations, the method analyzes the possible control

flow through the given task, attempts to combine the

control flow with hardware architecture abstract

model so as to obtain the desired upper bounds.

Control-Flow Analysis

The control flow analysis is finite and aims to

accumulate information on possible execution paths.

Any superset can be considered as a safe

approximation since the exact paths are not possibly

determined. The analysis is difficult on machine code

in comparison to the source code than as it is

cumbersome to map the machine-code program

results because of compilation, change of code

optimization and linking in the structure. The basic

concept of flow graph has been shown in Figure 1.

Figure 1. The Basic Concept of Flow Graph

It aims to estimate the WCET in dynamic

approaches which may be underestimated since a

subset of entire executions has been used for

estimation. In static approaches also known as

Bound Calculation an upper bound is computed for

the entire execution times of task relying on the

previous phase flow and timing information. There

are three major classes such as the path-based, the

structure-based, implicit path enumeration (IPET)

based on analytically determination of end-to-end

estimate times.

The structure-based approach cannot express every

control flow through the syntax tree thus, assumes a

straightforward relationship between the source and

target program structures. Further, it is not feasible

to incorporate additional flow information unlike

the IPET. On the other hand, IPET can handle

different flow information. It uses constraint

programming or integer linear programming

techniques and in this flow facts are converted to

constraints whose size grows with the number of

flow facts.

Let CI be the set of all CIs. We assume a specific

configuration j of a CI k ∈CI in hardware to have a

constant delay tk, j to require area on the

reconfigurable fabric ak, j∈[1, A], and to take a

constant reconfiguration delay rk j for configuring it

on the fabric. For a constant reconfiguration delay, a

constant bandwidth for transferring configuration

data to the reconfigurable fabric’s configuration

memory needs to be guaranteed. We assume the

CPU to be delayed during reconfiguration in this

work, and therefore the system bus could be utilized

for reconfiguration at a guaranteed bandwidth.

Along with hardware configurations, a CI can be

implemented using its original software code j = 0.

Since it has been implemented with a software, it

does not have a constant delay tk,0, because of

specific cache and pipeline analysis. (i.e., ak,0= rk,0 =

0).

In order to provide flexibility to execute the original

software for generated CIs, we introduce CI super

blocks. The CI superblocks begin with a conditional

branch before every CI (the actual instruction in the

binary) which jumps to the functionally equivalent

software code when the CI is not implemented in

hardware. If a configuration for the CI is available

on the reconfigurable fabric, then it is executed

instead of jumping to the software. The CI super

block ends by joining paths of hardware CI and

software. Multiple CI superblocks in the binary can

execute the same CI k. Let B be the set of all blocks,

that is, basic blocks (not contained in super blocks)

as well as super blocks. The function ci(i)

http://www.ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 319

determines which CI k is executed by a super block

i ∈B, that is, ci: B → CI ∪ {0}, i → k, with ci(i) = 0

∈CI if i is a basic block

To ensure that exactly one implementation is

chosen potentially in software (j= 0)or hardware (j

>0) with mk being the number of hardware

configurations of CI k. To only allow solutions that

do fit onto the reconfigurable fabric, we introduce

the area constraint is the sum of area on the

reconfigurable fabric ak, j required to implement all

CIs using the selected implementation j (for which

yk, j = 1) needs to be lower than or equal to the total

fabric area A. For a program with a count of N basic

blocks, the objective function is given as

Selecting an instruction set to optimize the WCET

bound essentially means. we aim to minimize the

WCET over all possible selections, that is, we aim to

minimize the maximum execution time.

We extend the ILP formulation of IPET for

capturing the implementation alternatives of a CI k

∈CI. We introduce new variables yk, j ∈ {0, 1} for

every implementation j with yk, j= 1 if CI k is

implemented using alternative j and yk, j= 0

otherwise

The total cycle contribution of CI k’s super block i to

the WCET bound is given as follows:

The WCET for a given selection y without

accounting for reconfiguration delay can be

determined as follows:

(4)

Every CI utilized in a kernel is configured exactly

once before entering the kernel (with zero

reconfiguration delay for software implementation).

Therefore, we obtain the WCET including

reconfiguration delay as:

III. OPTIMIZATION USING GA

Genetic Algorithm is a population-based search

method in which the candidate solutions are termed

as chromosomes, and the solution is termed as genes

in the chromosomes. A search space has been formed

using possible chromosomes. These are involved with

corresponding fitness function that represents

solutions encoded in the corresponding chromosome.

The search continues by computing the fitness of a

population of chromosomes followed by mutations

and recombination with respect to successful

chromosomes. The GA execution starts with a set of

random initial population which are sampled for a

particular task. The process of selection, crossover

and mutation are applied on the initial population to

get a new and better generation.

The basic Genetic Algorithm:

[Start]: random population of n chromosomes is

generated that gives suitable solutions for the task.

[Fitness]: The fitness (𝑥)with respect to each

chromosome 𝑥 in the population is evaluated.

[New population]: A new population is created using

the below steps and repeating them till completion of

the new population.

[Selection]: Two parent chromosomes are selected

from a population as per their fitness).

[Crossover]: Cross over the parents with across over

probability form a new offspring (children). In case of

http://www.ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 320

no crossover the offspring is an exact replica of

parents.

[Mutation] : Mutate new offspring with a mutation

probability at each locus that gives the position in

chromosome.

[Accepting]: The new offspring in a new population

is placed.

[Replace]: The new generated population is used for a

algorithm to be run further.

[Test]: When the end condition is satisfactory, stop,

and return to the best solution with respect to the

current population.

[Loop]: Go to fitness step.

The three basic steps for Genetic Algorithm, as

shown above, are:

1. Selection: In selection (also known as

reproduction), the chromosomes from the population

to be parents are selected to cross over and produce

offspring.

The various methods for parents to cross over are:

I. Roulette-wheel selection

II. Boltzmann selection

III. Tournament selection

IV. Rank selection

V. Steady-state selection

2. Cross over: The off springs are enriched with

suitable individuals after the selection phase. Cross

over process is continued to the mating pool and

expected to create a better string. It also has three

steps; firstly, the reproduction stage selects randomly

a pair of two individual strings for mating. Secondly,

a random cross-site is selected along the string length

and at last their position values are swapped between

those two strings. Different cross over types are:

I. Single-site cross over

II. Two-point cross over

III. Multi-point cross over

IV. Uniform cross over

V. Matrix cross over

3. Mutation: The strings are mutated once the cross

over process is completed. It involves flipping of bits

between 0 to 1 and vice versa using a small mutation

probability 𝑃𝑚. A number is chosen between 0 to 1

randomly and the bit is changed if the number is less

than 𝑃𝑚, otherwise it is unaltered.

Generating optimal test data using GA based on

fitness function: On the basis of basis paths, the

developed system automatically generates the

optimal test data in the CFG. The WCET analysis tool

architecture is shown in Figure 1.

Figure 2. WCET Analysis Tool Architecture

IV. RESULTS AND DISCUSSION

The processor is reconfigured with the optimization.

The parameter for genetic algorithm is given in

Table-I and related convergence for hardware and

software is shown in Figure 3.

Table 1. The parameter for genetic algorithm

Parameter Value

Generations 350

Population

Size

200

Chromosome

Length

300

Selection

mechanism

Tournament

size=2

Crossover 0.85 (fixed point)

Mutation 0.02

http://www.ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 321

Figure 3. The Fitness for the Specific Function

V. CONCLUSION

It is observed that using satisfy ability modulo theory

(SMT), the optimization has been a feasible approach

in case of the bounding the WCET of the

corresponding loop-free programs i.e., the programs

in which the loops may be unrolled. To best of our

knowledge, such an approach has been applied

successfully for the first time. In all these levels we

propose an evolutionary algorithm as the

optimization engine, which is helped by other

applications, either in a closed loop, either in off-line

phases. The development of the computer-aided

design or the CAD and compilation tools is one of the

major challenges for mapping any application into an

effective reconfigurable computing system. This

desires the determination of application parts for

mapping into the fabric and into the processor. Time

of determination and its frequency of mapping into

the reconfigurable fabric need to be emphasized in

future.

VI. REFERENCES

[1]. Asavoae, M., Maiza,C. Raymond, P., 2013,

Program Semantics in Model-Based WCET

Analysis: A State of the Art Perspective.

WCET Ed. by Claire Maiza. OASICS. 30, 32–41.

[2]. ClementBallabriga et al., 2010, OTAWA: An

Open Toolbox for Adaptive WCET Analysis.

SEUS. LNCS. Springer, 6399, 35–46.

[3]. Banerjee,A., Chattopadhyay,S. and

Roychoudhury,A., 2013, Precise micro

architectural modeling for WCET analysis via

AI+SAT. IEEE Real-Time and Embedded

Technology and Applications Sym- posium

(RTAS), IEEE Computer Society, 87–96.

[4]. Armin Biere et al., 2013, The Auspicious

Couple: Symbolic Execution and WCET

Analysis. WCET, OASIcs. IBFI Schloss

Dagstuhl, 30. 53–63.

http://drops.dagstuhl.de/opus/volltexte/2013/41

22.

[5]. Bjorner,N. Dutertre,B. and Moura, L., 2008,

Accelerating lemma learning using joins -

DPLL(⊔). Appeared as short paper in LPAR

2008, outside of proceedings.

[6]. Cadar, C. and Sen, K.., 2013, Symbolic

Execution for Software Testing: Three Decades

Later. Commun. ACM 56.2, 82–90.

[7]. Caspi,P., Raymond P., and Tripakis, S., 2008,

Synchronous Programming. Handbook of Real-

Time and Embedded Systems. Chapman & Hall

/ CRC, Chap. 14.

[8]. Chaki, S., and Ivers, J., 2010, Software model

checking without source code. English.

Innovations in Systems and Software

Engineering 6.3, 233–242. ISSN: 1614-5046.

doi: 10.1007/s11334-010- 0125-0.

[9]. Chattopadhyay, S., and Roychoudhury, A.,

2013 Scalable and precise refinement of cache

timing analysis via path-sensitive verification.

Real-Time Systems 49.4, 517–562.

[10]. Chu, D., and Jaffar, J., 2011, Symbolic

simulation on complicated loops for WCET

Path Analysis.EMSOFT. 319–328. ISBN: 978-1-

4503-0714-7. doi: 10.1145/2038642.2038692.

[11]. Wilhelm, R., 2006, Determining Bounds on

Execution Times. Handbook on Embedded

Systems. CRC Press, Chap. 14.

[12]. Reinhard Wilhelm et al., 2008, The worst-case

execution-time problem - overview of methods

http://www.ijsrcseit.com/

Volume 2, Issue 7, September - 2017 | http:// ijsrcseit.com

 322

and survey of tools. ACM Trans. Embedded

Comput. Syst.7.3.

[13]. Wankang Zhao et al., 2006, Improving WCET

by applying worst-case path optimizations.

Real- Time Systems 34.2, 129–152.

[14]. Kim,S.K., Min, S. L. and Ha,R., 1996, Efficient

Worst Case Timing Analysis of Data

Caching.IEEE Real-Time Technology and

Applications Symposium (RTAS’96). 230–240.

[15]. White,R., Muller, F. , Healy,C., Whalley,D.,

and Harmon, M.,1997, Timing Analysis for

Data Caches and Set-Associative Caches. IEEE

Real-Time Technology and Applications

Symposium (RTAS’97), 192–202.

[16]. Colin, A. and Puaut, I., 2000, Worst Case

Execution Time Analysis for a Processor with

Branch Prediction.Journal of Real-Time

Systems, 18, 2/3, 249–274.

[17]. Mitra, T. and Roychoudhury, A. , 2001, Effects

of Branch Prediction on Worst Case Execution

Time of Programs. National University of

Singapore (NUS),Tech. Rep. 11-01.

http://www.ijsrcseit.com/

