
CSEIT1722367 | Received : 01 May 2017 | Accepted : 20 May 2017 | May-June-2017 [(2)3: 943-950]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

943

Efficiency of Clustering Data Streams Based on Micro-Clusters

Shared Density
Avula Chitty

Department of CSE, Assistant Professor, Sri Indu College of Engineering And Technology, Hyderabad,

Telangana, India

ABSTRACT

As more and a lot of applications produce streaming information, clustering knowledge streams has become a

very important technique for data and information engineering. A typical approach is to summarize the

information stream in time with an online method into an oversized number of therefore known as micro-

clusters. Micro-clusters represent native density estimates by aggregating {the information} of the many data

points in an outlined area. On demand, a (modified) typical bunch formula is used in a very second offline step

to recluster the micro-clusters into larger final clusters. For reclustering, the centers of the micro-clusters are

used as pseudo points with the density estimates used as their weights. However, data concerning density

within the area between micro-clusters isn't preserved within the on-line process and reclustering relies on

probably inaccurate assumptions concerning the distribution of knowledge inside and between micro-clusters

(e.g., uniform or Gaussian).This paper describes DBSTREAM, the primary micro-cluster-based on-line bunch

part that expressly captures the density between micro-clusters via a shared density graph. The density data

during this graph is then exploited for reclustering supported actual density between adjacent micro-clusters.

We have a tendency to discuss the house and time complexness of maintaining the shared density graph.

Experiments on a good vary of artificial and real knowledge sets highlight that mistreatment shared density

improves bunch quality over alternative popular knowledge stream bunch ways that need the creation of a

bigger variety of smaller micro-clusters to realize comparable results.

Keywords: Data Mining, Data Stream Clustering, Density-Based Clustering

I. INTRODUCTION

CLUSTERING data streams has become n important

technique for data and knowledge engineering. A

data stream is an ordered and potentially unbounded

sequence of data points. Such streams of constantly

arriving data are generated for many types of

applications and include GPS data from smart phones,

web click-stream data, computer network

monitoring data, telecommunication connection data,

readings from sensor nets Stock quotes, etc.Data

stream clustering is typically done as a two-stage

process with an online part which summarizes the

data into many micro-clusters or grid cells and then,

in an offline process, these micro-clusters (cells) are

recluster/merged into a smaller number of final

clusters. Since the reclustering is an offline process

and thus not time critical, it is typically not discussed

in detail in papers about new data stream clustering

algorithms. Most papers suggest to use a where the

micro-clusters are used as pseudo points. Another

approach used in Den Stream is to use reach ability

where all micro-clusters which are less than a given

distance from each other are linked together to form

clusters. Grid-based algorithms typically merge

adjacent dense grid cells to form larger clusters.

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 944

Current reclustering approaches completely ignore

the data density in the area between the micro-

clusters (grid cells) and thus might join micro-

clusters (cells) which are close together but at the

same time separated by a small area of low density.

To address this problem, Tu and Chen introduced an

extension to the grid-based D-Stream algorithm

based on the concept of attraction between adjacent

grids cells and showed its effectiveness. In this paper,

we develop and evaluate a new method to address

this problem for micro- cluster-based algorithms. We

introduce the concept of a shared density graph,

which explicitly captures the density of the original

data between micro-clusters during clustering, and

then show how the graph can be used for

reclustering micro-clusters. This is a novel approach

since instead on relying on assumptions about the

distribution of data points assigned to a micro-cluster

(MC) (often a Gaussian distribution around a center);

it estimates the density in the shared region between

micro-clusters directly from the data. To the best of

our knowledge, this paper is the first to propose and

investigate using a shared-density-based reclustering

approach for data stream clustering.

II. RELATED WORK

Density-based clustering is a well-researched area

and we can only give a very brief overview here.

DBSCAN [10] and several of its improvements can be

seen as the prototypical density-based clustering

approach. DBSCAN estimates the density around

each data point by counting the number of points in

a user-specifies-neighbourhood and applies user-

specified thresholds to identify core, border and

noise points. In a second step, core points are joined

into a cluster if they are density-reachable (i.e., there

is a chain of core points where one falls inside the

eps-neighborhoodof the next). Finally, border points

are assigned to clusters.

Other approaches are based on kernel density

estimation (e.g., DENCLUE [11]) or use shared

nearest neighbours (e.g., SNN [12], CHAMELEON

[13]). However, these algorithms were not developed

with data streams in mind. A data stream is an

ordered and potentially unbounded sequence of data

points X = hx1; x2; x3; i. It is not possible to

permanently store all the data in the stream which

implies that repeated random access to the data is

infeasible. In addition, data streams exhibit concept

drift over time where the position and/or shape of

clusters changes, and new clusters may appear or

existing clusters disappear. This makes the

application of existing clustering algorithms difficult.

Data stream clustering algorithms limit data access to

a single pass over the data and adapt to concept drift.

Over the last 10 years, many algorithms for

clustering data streams have been proposed [5], [6],

[8], [9], [14], [15], [16], [17], [18], [19], and [20]. Most

data stream clustering algorithms use a two-stage

online/offline approach [4]:

1) Online: Summarize the data using a set of k0

micro clusters organized in a space-efficient data

structure, which also enables fast lookup. Micro-

clusters are representatives for sets of similar data

points and are created using a single pass over the

data (typically in real time when the data stream

arrives)cluster centres and additional statistics as

weight (density) and dispersion (variance) typically

represent .Micro-clusters. Each new data point is

assigned to its closest (in terms of a similarity

function) micro-cluster. Some algorithms use a grid

instead and non-empty grid cells represent micro

clusters (e.g., [8], [9]). If a new data point cannot be

assigned to an existing micro-cluster, a new micro

cluster is created. The algorithm might also perform

some housekeeping (merging or deleting

microclusters) to keep the number of micro-clusters

at manageable size or to remove noise or information

outdated due to concept drift.

2) Offline: When the user or the application requires

a clustering, the k0 micro-clusters are replastered

into k (k k0) final clusters sometimes referred to as

macro-clusters. Since the offline part is usually not

regarded time critical, most researchers only state

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 945

that they use a conventional clustering algorithm

(typically k-means or a variation of DBSCAN [10]) by

regarding the micro-cluster center positions as

pseudo-points. The algorithms are often modified to

take also the weight of micro-clusters into account.

However, these algorithms were not developed with

data streams in mind. A data stream is an ordered

and potentially unbounded sequence of data points X

¼ hx1; x2; x3; . . .i. It is not possible to permanently

store all the data in the stream, which implies that

repeated random access to the data is infeasible. Also,

data streams exhibit concept drift over time where

the position and/or shape of clusters changes, and

new clusters may appear or existing clusters

disappear. This makes the application of existing

clustering algorithms diffi-cult. Data stream

clustering algorithms limit data access to a single pass

over the data and adapt to concept drift. Over the last

10 years, many algorithms for clustering data streams

have been proposed. Most data stream clustering

algorithms use a two-stage online/offline approach.

Figure 1. Problem with reclustering when dense
areas are separated by small areas of low density with
(a) micro clusters and (b) grid cells.

Reclustering methods based solely on micro-clusters

only take closeness of the micro-clusters into

account. This makes it likely that two micro-clusters,

which are close to each other, but separated by an

area of low density still, will be merged into a cluster.

Information about the density between micro-

clusters is not available since the information is not

recorded in the online step and the original data

points are no longer available. Fig. 1a illustrates the

problem where the micro-clusters MC1 and MC2

will be merged as long as their distance d is low. This

is even true when density-based clus-tering methods

(e.g., DBSCAN) are used in the offline reclustering

step, since the reclustering is still exclusively based

on the micro-cluster centres and weights.

Figure 2. MC1 is a single MC. MC2 and MC3 are
close to each other but the density between them is
low relative to the two MCs densities while MC3 and
MC4 are connected by a high-density area.

III. PROPOSED SYSTEM

In this paper, we develop and evaluate a new method

to address this problem for micro-cluster-based

algorithms. We introduce the concept of a shared

density graph which explicitly captures the density

of the original data between micro-clusters during

clustering and then show how the graph can be used

for reclustering micro-clusters. This is a novel

approach since instead on relying on assumptions

about the distribution of data points assigned to a

microcluster (often a Gaussian distribution around a

center); it estimates the density in the shared region

between micro clusters directly from the data.

IV. THE DBSTREAM ONLINE COMPONENT

Typical micro-cluster-based data stream clustering

algorithms retain the density within each micro-

cluster as some form of weight (e.g., the number of

points assigned to the MC). Some algorithms also

capture the dispersion of the points by recording

variance. For reclustering, however, only the

distances between the MCs and their weights are

used. In this setting, MCs, which are closer to each

other, are more likely to end up in the same cluster.

This is even true if a density-based algorithm like

DBSCAN [10] is used for reclustering since here only

the position of the MC centers and their weights are

used. The density in the area between MCs is not

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 946

available since it is not retained during the online

stage.

The basic idea of this work is that if we can capture

not only the distance between two adjacent MCs but

also the connectivity using the density of the original

data in the area between the MCs, then the

reclustering results may be improved. In the

following, we develop DBSTREAM, which stands for

density-based stream clustering.

Leader-Based Clustering

Leader-based clustering was introduced by Hartigan

[21] as a conventional clustering algorithm. It is

straightforward to apply the idea to data streams (see,

e.g., [20]).DBSTREAM represents each MC by a

leader (a data point defining the MC’s center) and the

density in an area of a user-specified radius r

(threshold) around the center. This is similar to

DBSCAN’s concept of counting the points is an eps-

neighborhood, however, here the density is not

estimated for each point, but only for each MC

which can easily be achieved for streaming data. A

new data point is assigned to an existing MC (leader)

if it is within a fixed radius of its center. The assigned

point increases the density estimate of the chosen

cluster and the MC’s center is updated to move

towards the new data point. If the data point falls in

the assignment area of several MCs then all of them

are updated. If a data point cannot be assigned to any

existing MC, a new MC (leader) is created for the

point. Finding the potential clusters for a new data

point is a fixed-radius nearest-neighbor problem [22]

which can be efficiently dealt with for data of

moderate dimensionality using spatial indexing data

structures like a k-d tree [23]. Variations of this

simple algorithm were suggested in [24] for outlier

detection and in [25] for sequence modeling.

Competitive Learning

New leaders are chosen as points, which cannot be

assigned to an existing MC. The positions of these

newly formed MCs are most likely not ideal for the

clustering. To remedy this problem, we use a

competitive learning strategy intro-duced in [26] to

move the MC centers towards each newly assigned

point. To control the magnitude of the movement,

we use a neighborhood function hðÞ similar to self-

organiz-ing maps.

Capturing Shared Density

Capturing shared density directly in the online

component is a new concept introduced in this paper.

The fact, that in dense areas MCs will have an

overlapping assignment area, can be used to measure

density between MCs by counting the points, which

are assigned to two or more MCs. The idea is that

high density in the intersection area relative to the

rest of the MCs’ area means that the two MCs share

an area of high density and should be part of the

same macro-cluster-ter. In the example in Fig. 2, we

see that MC2 and MC3 are close to each other and

overlap. However, the shared weight s2; three is

small compared to the weight of each of the two

involved MCs indicating that the two MCs do not

form a single area of high density. On the other hand,

MC3 and MC4 are more distant, but their shared

weight s3; four is large indicating that both MCs

form an area of high density and thus should form a

single macro-cluster.

Fading and Forgetting Data

To adapt to evolving data streams we use the

exponential fading strategy introduced in Den

Stream [6] and used in many other algorithms.

Cluster weights are faded in every time step by a

factor of 2__, where _ > 0 is a user-specified fading

factor. We implement fading in a similar way as in

D-Stream [9], where fading is only applied when a

value changes (e.g., the weight of a MC is updated).

For example, if the current time-step is t ¼ 10 and

the weight w was last updated at 2 ¼ 5 then we

apply for fading the factor 2__ðt_twÞ resulting in the

correct fading for five time steps. In order for this

approach to work, we have to keep a time-stamp

with the time when fading was applied last for each

value that is subject to fading.

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 947

The Complete Online Algorithm

Algorithm 1 Update DBSTREAM clustering.

Require clustering data structures initially empty or

0

MC. Set of MCs

Mc 2 MC has elements mc = (c; w; t). Center, weight,

Last update time

S. weighted adjacency list for shared density graph

sij 2 S has an additional field t . time of last update

t. current time step

Require User-specified parameters

r . clustering threshold

_ . fading factor

tgap . cleanup interval

wmin . minimum weight

_ . intersection factor

1: function UPDATE(x) . new data point x

2: N _ndFixedRadiusNN(x;MC; r)

3: if jN j < 1 then . create new MC

4: add (c = x; t = t;w = 1) to MC

5: else . update existing MCs

6: for each i 2 N do

7: mci[w] mci[w] 2�_(t�mci[t]) + 1

8: mci[c] mci[c] + h(x; mci[c])(x � mci[c])

9: mci[t] t

. update shared density

10: for each j 2 N where j > i do

11: sij sij 2�_(t�sij [t]) + 1

12: sij [t] t

13: end for

14: end for

. prevent collapsing clusters

15: for each (i; j) 2 N _ N and j > i do

16: if dist(mci[c]; mcj [c]) < r then

17: revert mci[c], mcj [c] to previous positions

18: end if

19: end for

20: end if

21: t t + 1

22: end function

Algorithm 1 shows our approach and the used

clustering data structures and user-specified

parameters in detail. Micro-clusters are stored as a set

MC. Each micro-cluster is repre-sented by the tuple

ðc; w; tÞ representing the cluster center, the cluster

weight and the last time it was updated, respectively.

The weighted adjacency list S represents the sparse

shared density graph which captures the weight of

the data points shared by MCs. Since shared density

estimates are also subject to fading, we also store a

timestamp with each entry. Fading also shared

density estimates is important since MCs are allowed

to move which over time would lead to estimates of

intersection areas the MC is not covering anymore.

V. COMPUTATIONAL COMPLEXITY

Space complexity of the clustering depends on the

number of MCs that need to be stored in MC. In the

worse case, the maximum number of strong MCs at

any time is tgap MCs and is reached when every MC

receives exactly a weight of one during each interval

of tgap time steps. Given the cleanup strategy in

Algorithm 2, where we remove weak MCs every tgap

time steps, the algorithm never stores more than k0

¼ 2tgap MCs.

Algorithm 2 Cleanup process to remove inactive

microclusters

and shared density entries from memory.

Require: _, _, tgap, t, MC and S from the clustering.

1: function CLEANUP()

2: wweak = 2�_tgap

3: for each mc 2 MC do

4: if mc[w] 2�_(t�mc[t]) < wweak then

5: remove weak mc from MC

6: end if

7: end for

8: for each sij 2 S do

9: if sij 2�_(t�sij [t]) < _wweak then

10: remove weak shared density sij from S

11: end if

12: end for

13: end function

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 948

The space complexity of MC is linear in the maximal

number of MCs k0. The worst case size of the

adjacency list of the shared density graph S depends

on k0 and the dimensionality of the data. In the 2D

case each MC can have a maximum of jN j¼ 6

neighbors (at optimal packing). Therefore, each of

the k0 MCs has in the adjacency list S at most six

entries resulting in a space complexity of storing MC

and S of OðtgapÞ. For higher-dimensional data

streams, the maximal num-ber of possible adjacent

hyper spheres is given by Newton’s number also

referred to as kissing number [29]. Newton’s number

defines the maximal number of hyper spheres which

can touch a hyper sphere of the same size without

intersecting any other hyper sphere. If we double the

radius of all hyper spheres in this configuration then

we get our scenario with sphere centers touching the

surface of the center sphere. We use Kd do denote

Newton’s number in d dimensions. Newton’s exact

number is known only for some small dimensionality

values d, and for many other dimensions only lower

and upper bounds are known Note, that Newton’s

number grows fast, reaches 196,560 for d ¼ 24 and is

unknown for most larger d. This growth would make

storing the shared weights for high-dimensional data

in a densely packed area very expensive. However,

we also know that the maximal neighborhood size jN

maxj _ minðk0 _ 1; KdÞ, since we cannot have more

neigh-bors than we have MCs. Therefore, the space

complexity of maintaining S is bounded by Oðk0jN

maxjÞ.To analyze the algorithm’s time complexity,

we need to consider all parts of the clustering

function. The fixed-radius nearest neighbor search

can be done using linear search in Oðdnk0 Þ, where

d is the data dimensionality, n is the number of data

points clustered and k0 is the number of MCs. The

time complexity can be improved to Oðd n logðk0ÞÞ

using a special indexing data structure like a k-d tree

[23]. Adding or updating a single MC is done in time

linear in n.

VI. EXPERIMENTS ANALYSIS

To perform our experiments and make them

reproducible, we have implemented/interfaced all

algorithms in a pub-licly available R-extension called

stream [30]. Stream pro-vides an intuitive interface

for experimenting with data streams and data stream

algorithms. It includes generators for all the

synthetic data used in this paper as well as a growing

number of data stream mining algorithms including

clustering algorithms available in the MOA (Massive

Online Analysis) framework [31] and the algorithm

discussed in this paper. In this paper we use four

synthetic data streams called Cassini, Noisy Mixture

of Gaussians, and DS3 and DS41 used to evaluate

CHAMELEON [13]. These data sets do not exhibit

concept drift. For data with concept drift we use

MOA’s Random RBF Generator with Events. In

addition we use several real data sets called Sensor,2

Forest Cover Type3 and the KDD CUP’99 data4

which are often used for com-paring data stream

clustering algorithms.

Kremer et al. [32] discuss internal and external

evaluation measures for the quality of data stream

clustering. We conducted experiments with a large

set of evaluation measures (purity, precision, recall,

F-measure, sum of squared distances, silhouette

coefficient, mutual information, adjusted Rand

index). In this study we mainly report the adjusted

Rand index to evaluate the average agreement of the

known cluster structure (ground truth) of the data

stream with the found structure. The adjusted Rand

index (adjusted for expected random agreements) is

widely accepted as the appropriate measure to

compare the quality of different partitions given the

ground truth [33]. Zero indicates that the found

agreements can be entirely explained by chance and

the closer the index is to one, the better the

agreement. For clustering with concept drift, we also

report average purity and average within cluster sum

of squares (WSS). However, like most other measures,

these make comparison difficult. For example,

average purity (equivalent to precision and part of

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 949

the F-measure) depends on the number of clusters

and thus makes comparison of clustering’s with a

different number of clusters invalid. The within

cluster sum of squares favors algorithms which

produce spherical clusters (e.g., k-means-type

algorithms).

VII. CONCLUSION

This paper, we have developed the first data stream

clustering algorithm which explicitly records the

density in the area shared by micro-clusters and uses

this information for reclustering. We have

introduced the shared density graph together with

the algorithms needed to maintain the graph in the

online component of a data stream mining algorithm.

Although, we showed that the worst-case memory

requirements of the shared density graph grow

extremely fast with data dimensionality, complexity

analysis and experiments reveal that the procedure

can be effectively applied to data sets of moderate

dimensionality. Experiments also show that shared-

density reclustering already performs extremely well

when the online data stream clustering component is

set to produce a small number of large MCs. Other

popular reclustering strategies can only slightly

improve over the results of shared density

reclustering and need significantly more MCs to

achieve comparable results. This is an important

advantage since it implies that we can tune the

online component to produce less micro-clusters for

shared In -density reclustering. This improves

performance and, in many cases, the saved memory

more than offset the memory requirement for the

shared density graph.

VIII. REFERENCES

[1]. S. Guha, N. Mishra, R. Motwani, and L.

O’Callaghan, "Clustering data streams," in

Proceedings of the ACM Symposium on

Foundations of Computer Science, 12-14 Nov.

2000, pp. 359–366.

[2]. C. Aggarwal, Data Streams: Models and

Algorithms, ser. Advances in Database Systems,

Springer, Ed., 2007.

[3]. J. Gama, Knowledge Discovery from Data

Streams, 1st ed. Chapman & Hall/CRC, 2010.

[4]. J. A. Silva, E. R. Faria, R. C. Barros, E. R.

Hruschka, A. C. P. L.F. d. Carvalho, and J. a.

Gama, "Data stream clustering: A survey,"ACM

Computing Surveys, vol. 46, no. 1, pp. 13:1–

13:31, Jul. 2013.

[5]. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu,

"A framework for clustering evolving data

streams," in Proceedings of the International

Conference on Very Large Data Bases (VLDB

’03), 2003, pp. 81–92.

[6]. F. Cao, M. Ester, W. Qian, and A. Zhou,

"Density-based clustering over an evolving data

stream with noise," in Proceedings of the 2006

SIAM International Conference on Data

Mining. SIAM, 2006,pp. 328–339.

[7]. Y. Chen and L. Tu, "Density-based clustering

for real-time stream data," in Proceedings of

the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining. New York, NY,USA: ACM, 2007, pp.

133–142.

[8]. L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K.

Zhang, "Densitybased clustering of data

streams at multiple resolutions," ACM

Transactions on Knowledge Discovery from

Data, vol. 3, no. 3, pp.1–28, 2009.

[9]. L. Tu and Y. Chen, "Stream data clustering

based on grid density and attraction," ACM

Transactions on Knowledge Discovery from

Data, vol. 3, no. 3, pp. 1–27, 2009.

[10]. L. Ertoz, M. Steinbach, and V. Kumar, "A new

shared nearestneighbor clustering algorithm

and its applications," in Workshopon

Clustering High Dimensional Data and its

Applications at 2nd SIAM International

Conference on Data Mining, 2002.

[11]. P. Kranen, I. Assent, C. Baldauf, and T. Seidl,

"The clustree:indexing micro-clusters for

anytime stream mining," Knowledge and

Information Systems, vol. 29, no. 2, pp. 249–

272, 2011.

[12]. A. Amini and T. Y. Wah, "Leaden-stream: A

leader density based clustering algorithm over

Volume 2, Issue 3, May-June-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 950

evolving data stream," Journal of Computer and

Communications, vol. 1, no. 5, pp. 26–31, 2013.

[13]. J. A. Hartigan, Clustering Algorithms, 99th ed.

New York, NY,USA: John Wiley & Sons, Inc.,

1975.

[14]. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and

S. Stolfo, "A geometric framework for

unsupervised anomaly detection: Detecting

intrusions in unlabeled data," in Data Mining

for Security Applications. Lower, 2002.

[15]. M. Hahsler and M. H. Dunham, "Temporal

structure learning for clustering massive data

streams in real-time," in SIAM Conference on

Data Mining (SDM11). SIAM, April 2011, pp.

664–675.

[16]. C. Isaksson, M. H. Dunham, and M. Hahsler,

"Sostream: Self organizing density-based

clustering over data stream," in Machine

Learning and Data Mining in Pattern

Recognition, ser. Lecture Notesin Computer

Science. Springer Berlin Heidelberg, 2012, vol.

7376,pp. 264–278.

[17]. "Neurocomputing: Foundations of research," J.

A. Andersonand E. Rosenfeld, Eds. Cambridge,

MA, USA: MIT Press, 1988, ch.Self-organized

Formation of Topologically Correct Feature

Maps, pp. 509–521.

[18]. M. Hahsler, M. Bolanos, and J. Forrest, stream:

Infrastructure for Data Stream Mining, 2015, R

package version 1.2-2.

[19]. A. Bifet, G. Holmes, R. Kirkby, and B.

Pfahringer, "MOA: massive online analysis,"

Journal of Machine Learning Research, vol. 99,

pp. 1601–1604, August 2010.

[20]. H. Kremer, P. Kranen, T. Jansen, T. Seidl, A.

Bifet, G. Holmes, and B. Pfahringer, "An

effective evaluation measure for clustering on

evolving data streams," in Proceedings of the

17th ACM SIGKDD international conference

on Knowledge discovery and data mining.

ACM, 2011, pp. 868–876.

[21]. J. Gama, R. Sebasti˜ao, and P. P. Rodrigues,

"On evaluating stream learning algorithms,"

Machine Learning, pp. 317–346, 2013.

[22]. A. Bifet, G. de Francisci Morales, J. Read, G.

Holmes, andB. Pfahringer, "Efficient online

evaluation of big data stream classifiers," in

Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’15.

ACM, 2015, pp. 59–68

