
CSEIT1722367 | Received : 01 May  2017 | Accepted : 20 May 2017 | May-June-2017 [(2)3: 943-950 ] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307 

 

943 

Efficiency of Clustering Data Streams Based on Micro-Clusters 

Shared Density  
Avula Chitty 

Department of CSE, Assistant Professor, Sri Indu College of Engineering And Technology, Hyderabad, 

Telangana, India 

ABSTRACT 
 

As more and a lot of applications produce streaming information, clustering knowledge streams has become a 

very important technique for data and information engineering. A typical approach is to summarize the 

information stream in time with an online method into an oversized number of therefore known as micro-

clusters. Micro-clusters represent native density estimates by aggregating {the information} of the many data 

points in an outlined area. On demand, a (modified) typical bunch formula is used in a very second offline step 

to recluster the micro-clusters into larger final clusters. For reclustering, the centers of the micro-clusters are 

used as pseudo points with the density estimates used as their weights. However, data concerning density 

within the area between micro-clusters isn't preserved within the on-line process and reclustering relies on 

probably inaccurate assumptions concerning the distribution of knowledge inside and between micro-clusters 

(e.g., uniform or Gaussian).This paper describes DBSTREAM, the primary micro-cluster-based on-line bunch 

part that expressly captures the density between micro-clusters via a shared density graph. The density data 

during this graph is then exploited for reclustering supported actual density between adjacent micro-clusters. 

We have a tendency to discuss the house and time complexness of maintaining the shared density graph. 

Experiments on a good vary of artificial and real knowledge sets highlight that mistreatment shared density 

improves bunch quality over alternative popular knowledge stream bunch ways that need the creation of a 

bigger variety of smaller micro-clusters to realize comparable results. 
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I. INTRODUCTION 

 
CLUSTERING data streams has become n important 

technique for data and knowledge engineering. A 

data stream is an ordered and potentially unbounded 

sequence of data points. Such streams of constantly 

arriving data are generated for many types of 

applications and include GPS data from smart phones, 

web click-stream data, computer network 

monitoring data, telecommunication connection data, 

readings from sensor nets Stock quotes, etc.Data 

stream clustering is typically done as a two-stage 

process with an online part which summarizes the 

data into many micro-clusters or grid cells and then, 

in an offline process, these micro-clusters (cells) are 

recluster/merged into a smaller number of final 

clusters. Since the reclustering is an offline process 

and thus not time critical, it is typically not discussed 

in detail in papers about new data stream clustering 

algorithms. Most papers suggest to use a where the 

micro-clusters are used as pseudo points. Another 

approach used in Den Stream is to use reach ability 

where all micro-clusters which are less than a given 

distance from each other are linked together to form 

clusters. Grid-based algorithms typically merge 

adjacent dense grid cells to form larger clusters. 
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Current reclustering approaches completely ignore 

the data density in the area between the micro-

clusters (grid cells) and thus might join micro-

clusters (cells) which are close together but at the 

same time separated by a small area of low density. 

To address this problem, Tu and Chen introduced an 

extension to the grid-based D-Stream algorithm 

based on the concept of attraction between adjacent 

grids cells and showed its effectiveness. In this paper, 

we develop and evaluate a new method to address 

this problem for micro- cluster-based algorithms. We 

introduce the concept of a shared density graph, 

which explicitly captures the density of the original 

data between micro-clusters during clustering, and 

then show how the graph can be used for 

reclustering micro-clusters. This is a novel approach 

since instead on relying on assumptions about the 

distribution of data points assigned to a micro-cluster 

(MC) (often a Gaussian distribution around a center); 

it estimates the density in the shared region between 

micro-clusters directly from the data. To the best of 

our knowledge, this paper is the first to propose and 

investigate using a shared-density-based reclustering 

approach for data stream clustering. 

 

II. RELATED WORK 

 

Density-based clustering is a well-researched area 

and we can only give a very brief overview here. 

DBSCAN [10] and several of its improvements can be 

seen as the prototypical density-based clustering 

approach. DBSCAN estimates the density around 

each data point by counting the number of points in 

a user-specifies-neighbourhood and applies user-

specified thresholds to identify core, border and 

noise points. In a second step, core points are joined 

into a cluster if they are density-reachable (i.e., there 

is a chain of core points where one falls inside the 

eps-neighborhoodof the next). Finally, border points 

are assigned to clusters. 

 

Other approaches are based on kernel density 

estimation (e.g., DENCLUE [11]) or use shared 

nearest neighbours (e.g., SNN [12], CHAMELEON 

[13]). However, these algorithms were not developed 

with data streams in mind. A data stream is an 

ordered and potentially unbounded sequence of data 

points X = hx1; x2; x3; i. It is not possible to 

permanently store all the data in the stream which 

implies that repeated random access to the data is 

infeasible. In addition, data streams exhibit concept 

drift over time where the position and/or shape of 

clusters changes, and new clusters may appear or 

existing clusters disappear. This makes the 

application of existing clustering algorithms difficult. 

Data stream clustering algorithms limit data access to 

a single pass over the data and adapt to concept drift. 

Over the last 10 years, many algorithms for 

clustering data streams have been proposed [5], [6], 

[8], [9], [14], [15], [16], [17], [18], [19], and [20]. Most 

data stream clustering algorithms use a two-stage 

online/offline approach [4]: 

 

1) Online: Summarize the data using a set of k0 

micro clusters organized in a space-efficient data 

structure, which also enables fast lookup. Micro-

clusters are representatives for sets of similar data 

points and are created using a single pass over the 

data (typically in real time when the data stream 

arrives)cluster centres and additional statistics as 

weight (density) and dispersion (variance) typically 

represent .Micro-clusters. Each new data point is 

assigned to its closest (in terms of a similarity 

function) micro-cluster. Some algorithms use a grid 

instead and non-empty grid cells represent micro 

clusters (e.g., [8], [9]). If a new data point cannot be 

assigned to an existing micro-cluster, a new micro 

cluster is created. The algorithm might also perform 

some housekeeping (merging or deleting 

microclusters) to keep the number of micro-clusters 

at manageable size or to remove noise or information 

outdated due to concept drift. 

 

2) Offline: When the user or the application requires 

a clustering, the k0 micro-clusters are replastered 

into k (k k0) final clusters sometimes referred to as 

macro-clusters. Since the offline part is usually not 

regarded time critical, most researchers only state 
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that they use a conventional clustering algorithm 

(typically k-means or a variation of DBSCAN [10]) by 

regarding the micro-cluster center positions as 

pseudo-points. The algorithms are often modified to 

take also the weight of micro-clusters into account. 

 

However, these algorithms were not developed with 

data streams in mind. A data stream is an ordered 

and potentially unbounded sequence of data points X 

¼ hx1; x2; x3; . . .i. It is not possible to permanently 

store all the data in the stream, which implies that 

repeated random access to the data is infeasible. Also, 

data streams exhibit concept drift over time where 

the position and/or shape of clusters changes, and 

new clusters may appear or existing clusters 

disappear. This makes the application of existing 

clustering algorithms diffi-cult. Data stream 

clustering algorithms limit data access to a single pass 

over the data and adapt to concept drift. Over the last 

10 years, many algorithms for clustering data streams 

have been proposed. Most data stream clustering 

algorithms use a two-stage online/offline approach. 

 

 
 
Figure 1. Problem with reclustering when dense 
areas are separated by small areas of low density with 
(a) micro clusters and (b) grid cells. 

 

Reclustering methods based solely on micro-clusters 

only take closeness of the micro-clusters into 

account. This makes it likely that two micro-clusters, 

which are close to each other, but separated by an 

area of low density still, will be merged into a cluster. 

Information about the density between micro-

clusters is not available since the information is not 

recorded in the online step and the original data 

points are no longer available. Fig. 1a illustrates the 

problem where the micro-clusters MC1 and MC2 

will be merged as long as their distance d is low. This 

is even true when density-based clus-tering methods 

(e.g., DBSCAN) are used in the offline reclustering 

step, since the reclustering is still exclusively based 

on the micro-cluster centres and weights. 

  
 
 
 
 
 
 
 
 
 
 
Figure 2. MC1 is a single MC. MC2 and MC3 are 
close to each other but the density between them is 
low relative to the two MCs densities while MC3 and 
MC4 are connected by a high-density area. 

 

III. PROPOSED SYSTEM 

 

In this paper, we develop and evaluate a new method 

to address this problem for micro-cluster-based 

algorithms. We introduce the concept of a shared 

density graph which explicitly captures the density 

of the original data between micro-clusters during 

clustering and then show how the graph can be used 

for reclustering micro-clusters. This is a novel 

approach since instead on relying on assumptions 

about the distribution of data points assigned to a 

microcluster (often a Gaussian distribution around a 

center); it estimates the density in the shared region 

between micro clusters directly from the data. 

 

IV. THE DBSTREAM ONLINE COMPONENT 

 

Typical micro-cluster-based data stream clustering 

algorithms retain the density within each micro-

cluster as some form of weight (e.g., the number of 

points assigned to the MC). Some algorithms also 

capture the dispersion of the points by recording 

variance. For reclustering, however, only the 

distances between the MCs and their weights are 

used. In this setting, MCs, which are closer to each 

other, are more likely to end up in the same cluster. 

This is even true if a density-based algorithm like 

DBSCAN [10] is used for reclustering since here only 

the position of the MC centers and their weights are 

used. The density in the area between MCs is not 
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available since it is not retained during the online 

stage. 

 

The basic idea of this work is that if we can capture 

not only the distance between two adjacent MCs but 

also the connectivity using the density of the original 

data in the area between the MCs, then the 

reclustering results may be improved. In the 

following, we develop DBSTREAM, which stands for 

density-based stream clustering. 

 

Leader-Based Clustering 

Leader-based clustering was introduced by Hartigan 

[21] as a conventional clustering algorithm. It is 

straightforward to apply the idea to data streams (see, 

e.g., [20]).DBSTREAM represents each MC by a 

leader (a data point defining the MC’s center) and the 

density in an area of a user-specified radius r 

(threshold) around the center. This is similar to 

DBSCAN’s concept of counting the points is an eps-

neighborhood, however, here the density is not 

estimated for each point, but only for each MC 

which can easily be achieved for streaming data. A 

new data point is assigned to an existing MC (leader) 

if it is within a fixed radius of its center. The assigned 

point increases the density estimate of the chosen 

cluster and the MC’s center is updated to move 

towards the new data point. If the data point falls in 

the assignment area of several MCs then all of them 

are updated. If a data point cannot be assigned to any 

existing MC, a new MC (leader) is created for the 

point. Finding the potential clusters for a new data 

point is a fixed-radius nearest-neighbor problem [22] 

which can be efficiently dealt with for data of 

moderate dimensionality using spatial indexing data 

structures like a k-d tree [23]. Variations of this 

simple algorithm were suggested in [24] for outlier 

detection and in [25] for sequence modeling. 

 

Competitive Learning 

New leaders are chosen as points, which cannot be 

assigned to an existing MC. The positions of these 

newly formed MCs are most likely not ideal for the 

clustering. To remedy this problem, we use a 

competitive learning strategy intro-duced in [26] to 

move the MC centers towards each newly assigned 

point. To control the magnitude of the movement, 

we use a neighborhood function hðÞ similar to self-

organiz-ing maps. 

  

Capturing Shared Density 

Capturing shared density directly in the online 

component is a new concept introduced in this paper. 

The fact, that in dense areas MCs will have an 

overlapping assignment area, can be used to measure 

density between MCs by counting the points, which 

are assigned to two or more MCs. The idea is that 

high density in the intersection area relative to the 

rest of the MCs’ area means that the two MCs share 

an area of high density and should be part of the 

same macro-cluster-ter. In the example in Fig. 2, we 

see that MC2 and MC3 are close to each other and 

overlap. However, the shared weight s2; three is 

small compared to the weight of each of the two 

involved MCs indicating that the two MCs do not 

form a single area of high density. On the other hand, 

MC3 and MC4 are more distant, but their shared 

weight s3; four is large indicating that both MCs 

form an area of high density and thus should form a 

single macro-cluster. 

 

Fading and Forgetting Data 

To adapt to evolving data streams we use the 

exponential fading strategy introduced in Den 

Stream [6] and used in many other algorithms. 

Cluster weights are faded in every time step by a 

factor of 2__, where _ > 0 is a user-specified fading 

factor. We implement fading in a similar way as in 

D-Stream [9], where fading is only applied when a 

value changes (e.g., the weight of a MC is updated). 

For example, if the current time-step is t ¼ 10 and 

the weight w was last updated at 2 ¼ 5 then we 

apply for fading the factor 2__ðt_twÞ resulting in the 

correct fading for five time steps. In order for this 

approach to work, we have to keep a time-stamp 

with the time when fading was applied last for each 

value that is subject to fading. 
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The Complete Online Algorithm 

 

Algorithm 1 Update DBSTREAM clustering. 

Require clustering data structures initially empty or 

0 

MC. Set of MCs 

Mc 2 MC has elements mc = (c; w; t). Center, weight, 

Last update time 

S. weighted adjacency list for shared density graph 

sij 2 S has an additional field t . time of last update 

t. current time step 

Require User-specified parameters 

r . clustering threshold 

_ . fading factor 

tgap . cleanup interval 

wmin . minimum weight 

_ . intersection factor 

1: function UPDATE(x) . new data point x 

2: N   _ndFixedRadiusNN(x;MC; r) 

3: if jN j < 1 then . create new MC 

4: add (c = x; t = t;w = 1) to MC 

5: else . update existing MCs 

6: for each i 2 N do 

7: mci[w]   mci[w] 2�_(t�mci[t]) + 1 

8: mci[c]   mci[c] + h(x; mci[c])(x � mci[c]) 

9: mci[t]   t 

. update shared density 

10: for each j 2 N where j > i do 

11: sij   sij 2�_(t�sij [t]) + 1 

12: sij [t]   t 

13: end for 

14: end for 

. prevent collapsing clusters 

15: for each (i; j) 2 N _ N and j > i do 

16: if dist(mci[c]; mcj [c]) < r then 

17: revert mci[c], mcj [c] to previous positions 

18: end if 

19: end for 

20: end if 

21: t   t + 1 

22: end function  

 

Algorithm 1 shows our approach and the used 

clustering data structures and user-specified 

parameters in detail. Micro-clusters are stored as a set 

MC. Each micro-cluster is repre-sented by the tuple 

ðc; w; tÞ representing the cluster center, the cluster 

weight and the last time it was updated, respectively. 

The weighted adjacency list S represents the sparse 

shared density graph which captures the weight of 

the data points shared by MCs. Since shared density 

estimates are also subject to fading, we also store a 

timestamp with each entry. Fading also shared 

density estimates is important since MCs are allowed 

to move which over time would lead to estimates of 

intersection areas the MC is not covering anymore. 

 

V. COMPUTATIONAL COMPLEXITY 

 

Space complexity of the clustering depends on the 

number of MCs that need to be stored in MC. In the 

worse case, the maximum number of strong MCs at 

any time is tgap MCs and is reached when every MC 

receives exactly a weight of one during each interval 

of tgap time steps. Given the cleanup strategy in 

Algorithm 2, where we remove weak MCs every tgap 

time steps, the algorithm never stores more than k0 

¼ 2tgap MCs. 

 

Algorithm 2 Cleanup process to remove inactive 

microclusters 

and shared density entries from memory. 

Require: _, _, tgap, t, MC and S from the clustering. 

1: function CLEANUP( ) 

2: wweak = 2�_tgap 

3: for each mc 2 MC do 

4: if mc[w] 2�_(t�mc[t]) < wweak then 

5: remove weak mc from MC 

6: end if 

7: end for 

8: for each sij 2 S do 

9: if sij 2�_(t�sij [t]) < _wweak then 

10: remove weak shared density sij from S 

11: end if 

12: end for 

13: end function 
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The space complexity of MC is linear in the maximal 

number of MCs k0. The worst case size of the 

adjacency list of the shared density graph S depends 

on k0 and the dimensionality of the data. In the 2D 

case each MC can have a maximum of jN j¼ 6 

neighbors (at optimal packing). Therefore, each of 

the k0 MCs has in the adjacency list S at most six 

entries resulting in a space complexity of storing MC 

and S of OðtgapÞ. For higher-dimensional data 

streams, the maximal num-ber of possible adjacent 

hyper spheres is given by Newton’s number also 

referred to as kissing number [29]. Newton’s number 

defines the maximal number of hyper spheres which 

can touch a hyper sphere of the same size without 

intersecting any other hyper sphere. If we double the 

radius of all hyper spheres in this configuration then 

we get our scenario with sphere centers touching the 

surface of the center sphere. We use Kd do denote 

Newton’s number in d dimensions. Newton’s exact 

number is known only for some small dimensionality 

values d, and for many other dimensions only lower 

and upper bounds are known Note, that Newton’s 

number grows fast, reaches 196,560 for d ¼ 24 and is 

unknown for most larger d. This growth would make 

storing the shared weights for high-dimensional data 

in a densely packed area very expensive. However, 

we also know that the maximal neighborhood size jN 

maxj _ minðk0 _ 1; KdÞ, since we cannot have more 

neigh-bors than we have MCs. Therefore, the space 

complexity of maintaining S is bounded by Oðk0jN 

maxjÞ.To analyze the algorithm’s time complexity, 

we need to consider all parts of the clustering 

function. The fixed-radius nearest neighbor search 

can be done using linear search in Oðdnk0 Þ, where 

d is the data dimensionality, n is the number of data 

points clustered and k0 is the number of MCs. The 

time complexity can be improved to Oðd n logðk0ÞÞ 

using a special indexing data structure like a k-d tree 

[23]. Adding or updating a single MC is done in time 

linear in n. 

 

 

 

 

VI. EXPERIMENTS ANALYSIS  

 

To perform our experiments and make them 

reproducible, we have implemented/interfaced all 

algorithms in a pub-licly available R-extension called 

stream [30]. Stream pro-vides an intuitive interface 

for experimenting with data streams and data stream 

algorithms. It includes generators for all the 

synthetic data used in this paper as well as a growing 

number of data stream mining algorithms including 

clustering algorithms available in the MOA (Massive 

Online Analysis) framework [31] and the algorithm 

discussed in this paper. In this paper we use four 

synthetic data streams called Cassini, Noisy Mixture 

of Gaussians, and DS3 and DS41 used to evaluate 

CHAMELEON [13]. These data sets do not exhibit 

concept drift. For data with concept drift we use 

MOA’s Random RBF Generator with Events. In 

addition we use several real data sets called Sensor,2 

Forest Cover Type3 and the KDD CUP’99 data4 

which are often used for com-paring data stream 

clustering algorithms. 

 

Kremer et al. [32] discuss internal and external 

evaluation measures for the quality of data stream 

clustering. We conducted experiments with a large 

set of evaluation measures (purity, precision, recall, 

F-measure, sum of squared distances, silhouette 

coefficient, mutual information, adjusted Rand 

index). In this study we mainly report the adjusted 

Rand index to evaluate the average agreement of the 

known cluster structure (ground truth) of the data 

stream with the found structure. The adjusted Rand 

index (adjusted for expected random agreements) is 

widely accepted as the appropriate measure to 

compare the quality of different partitions given the 

ground truth [33]. Zero indicates that the found 

agreements can be entirely explained by chance and 

the closer the index is to one, the better the 

agreement. For clustering with concept drift, we also 

report average purity and average within cluster sum 

of squares (WSS). However, like most other measures, 

these make comparison difficult. For example, 

average purity (equivalent to precision and part of 
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the F-measure) depends on the number of clusters 

and thus makes comparison of clustering’s with a 

different number of clusters invalid. The within 

cluster sum of squares favors algorithms which 

produce spherical clusters (e.g., k-means-type  

algorithms).  

VII. CONCLUSION 

 

This paper, we have developed the first data stream 

clustering algorithm which explicitly records the 

density in the area shared by micro-clusters and uses 

this information for reclustering. We have 

introduced the shared density graph together with 

the algorithms needed to maintain the graph in the 

online component of a data stream mining algorithm. 

Although, we showed that the worst-case memory 

requirements of the shared density graph grow 

extremely fast with data dimensionality, complexity 

analysis and experiments reveal that the procedure 

can be effectively applied to data sets of moderate 

dimensionality. Experiments also show that shared-

density reclustering already performs extremely well 

when the online data stream clustering component is 

set to produce a small number of large MCs. Other 

popular reclustering strategies can only slightly 

improve over the results of shared density 

reclustering and need significantly more MCs to 

achieve comparable results. This is an important 

advantage since it implies that we can tune the 

online component to produce less micro-clusters for 

shared In -density reclustering. This improves 

performance and, in many cases, the saved memory 

more than offset the memory requirement for the 

shared density graph. 
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