
CSEIT1831139 | Received : 10 March 2018 | Accepted : 20 March 2018 | March-April-2018 [(3) 3 : 539-546]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

539

Heterogeneous System Architecture (HSA)
Agbaje Michael .O,Bammeke Adekunle, Ohwo Onome Blaise

Babcock University, Nigeria

ABSTRACT

The measure of computerized information being created and put away is expanding at a disturbing rate. This

information is classified and handled to distil and convey data to clients crossing various businesses for example,

finance, online networking, gaming and so forth. This class of workloads is alluded to as throughput computing

applications. Multi-core CPUs have been viewed as reasonable for handling information in such workloads. Be

that as it may, energized by high computational throughput and energy proficiency, there has been a fast

reception of Graphics Processing Units (GPUs) as computing engines lately. GPU computing has risen lately as

a reasonable execution stage for throughput situated applications or regions of code. GPUs began as free units

for program execution however there are clear patterns towards tight-sew CPU-GPU integration. In this paper,

we look to comprehend cutting edge Heterogeneous System Architecture and inspect a few key segments that

influences it to emerge from other architecture designs by analyzing existing inquiries about, articles and

reports bearing and future open doors for HSA systems.

Keywords: heterogeneous system architecture, latency compute unit, throughput compute unit, CPU, GPU.

I. INTRODUCTION

Throughout the years, computer system architecture

following the Moore's law has advanced from the

single-core era to the multi-core era. Presently with

the rise of Heterogeneous System Architecture (HSA),

computer system architecture has brought together

perspective of fundamental computing components

enabling developers to compose applications that

flawlessly coordinate Central Processing Units (CPUs)

(called latency compute units) with Graphical

Processing Units (GPUs) (called throughput compute

units), while profiting from the best characteristics of

each. As of late, GPUs have changed from the

conventional unadulterated graphics accelerators to

more broadly useful parallel processors that supports

standard Application Programming Interface(API)

and tools, for example, C++AMP, OpenCLTM and

DirectCompute. (George Kyriazis, 2012)

These APIs however encouraging are as yet looked

with many obstacles for the making of a domain that

permits the GPU to be utilized as smoothly as the

CPU for regular programming tasks: diverse memory

spaces amongst CPU and GPU, non-virtualized

hardware, et cetera. These obstacles are evacuated by

HSA, in this way enabling software engineers to

exploit the parallel processor in the GPU as a co-

processor to the conventional multithreaded CPU.

The objective of the HSA system is to make a solitary

brought together programming platform giving a

solid establishment to the advancement of languages,

structures, and applications that adventure

parallelism. All the more particularly, HSA's

objectives include:

 Removing the CPU/GPU programmability

hindrance.

 Reducing CPU/GPU communication latency.

 Opening the programming platform to a more

extensive scope of utilizations by empowering

existing programming models.

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 540

 Creating a reason for the incorporation of extra

processing components past the CPU and GPU.

HSA enables exploitation of the abundant

information parallelism in the computational

workloads of today and without bounds in a power-

proficient way. It likewise gives continued support to

conventional programming models and computer

architectures. (George Kyriazis, 2012)

We are at the point where we are unable to power all

of the transistors we have on chip. Ways around this

have generally involved heterogeneous architectures,

where you have multiple distinct computation units

that are optimized in terms of performance and

power for specific tasks. Then, computation can be

directed to those units.

The main objective of this paper is to do an overview

and descriptive study of Heterogeneous System

Architecture by reviewing articles and journals about

HSA paradigm and also related works done in the

improvement of HSA.

II. LITERATURE REVIEW

2.1History of HSA

Computers and other innovation initially started

with single-core processors; in the early 2000s, the

historical backdrop of computing was perpetually

changed by pushing in multi-core processors. The

single-core processors were attaining limits, and they

could not physically enhance these present designs

without revising the whole production process. This

lead to designing the processors on a multi-core

format. After some time, the multi-core processor

advanced from dual core to tri, quad, hex and octa

core designs. A few processors now hold many

several cores.

The development additionally proceeds regarding

innovative design refinement. The present processors

with various cores are currently designed with multi-

threading features, achievement improvements, for

example, memory-on-chip, and heterogeneous core

design intended for special purposes. We can ascribe

these developments to a few rising needs patterns: on

one hand, contemporary technologies must turn out

to be increasingly productive in networking,

multimedia processing, and device recognition. On

the other hand, energy effectiveness must increase

also.

Since the earliest reference point of integrated

circuits advancement, processors were designed with

consistently expanding clock frequencies and

sophisticated in-build optimization strategies. As

individual CPU gates grow smaller through

manufacture breakthroughs, semiconductor

microelectronics likewise turn out to be increasingly

enhanced regarding physical properties.

Because of physical constraints, this speedup has

arrived at an end. Physical imperatives set up various

hindrances in accomplishing high performance

computing within power budgets. Computer

architectures are endeavoring to cross these

performance restricting walls utilizing number of

innovative processor architectures employing area

concurrency (Paul, 2014).

The single chip graphics processor by around year

2000 incorporated practically everything about the

conventional top of the line workstation graphics

pipeline and thusly, merited another name past VGA

controller. The term GPU was instituted to indicate

that the graphics device had turned into a processor.

After some time, GPUs turned out to be more

programmable, as programmable processors

supplanted fixed function dedicated logic while

keeping up the fundamental 3D graphics pipeline

organization. What's more, computations turned out

to be more exact after some time, progressing from

indexed arithmetic, to integer and fixed point, to

single precision floating-point, and recently to

double precision floating-point. GPUs have

progressed toward becoming hugely parallel

programmable processors with hundreds of cores and

thousands of threads.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 541

As of late, processor instructions and memory

hardware were added to help general-purpose

programming languages, and a programming

environment was made to enable GPUs to be

modified utilizing well-known languages, including

C and C++. This advancement makes a GPU a fully

general purpose, programmable, many core processor,

though still with some special advantages and

limitations (Nickolls & Kirk, 2012).

Multicore processors have just been prominent to

enhance the total performance. Considering the

power and temperature constraints, they may be the

sole practical solution. A considerable measure of

studies to decide the best multicore setup is

conducted and it is believed that the heterogeneous

multicore is the best in power and performance

trade-off (Sato, Mori, Yano, & Hayashida, 2012).

2.2 Features of HSA

The HSA engineering manages two sorts of compute

units:

 A latency compute unit (LCU) is a

generalization of a CPU. A LCU bolsters both

its local CPU instruction set and the HSA

intermediate language (HSAIL) instruction set.

 A throughput compute unit (TCU) is a

generalization of a GPU. A TCU underpins just

the HSAIL instruction set. TCUs perform

extremely proficient parallel execution.

A HSA application can keep running on an extensive

variety of platforms comprising of both LCUs and

TCUs. The HSA structure enables the application to

execute at the most ideal performance and power

point on a given platform, without yielding

adaptability. In the meantime, HSA enhances

programmability, portability and compatibility.

George Kyriazis (2012), featured some noticeable

compositional highlights of HSA and it incorporates:

 Shared page table support: To disentangle

operating system and user software, HSA permits

a single set of page table entries to be shared

amongst LCUs and TCUs. This enables units of

the two types to get to memory through the same

virtual address. In simplified terms, the operating

system just needs to oversee one set of page

tables; along these lines empowering Shared

Virtual Memory (SVM) semantics amongst LCU

and TCU.

 Page faulting: operating systems permit user

processes to access more memory than is

physically addressable by paging memory to and

from disk. What's more, the operating system

and driver needed to create and manage a

different virtual address space for the TCU to

utilize. HSA expels the burdens of pinned

memory and separate virtual address

management, by permitting compute units to

page fault and to utilize the same large address

space as the CPU.

 User-level command queuing: Time spent

waiting for the operating system kernel service

was often a major performance bottleneck in

earlier throughput compute systems. HSA

radically lessens the time to dispatch work to the

TCU by enabling a dispatch queue for every

application and by permitting user mode process

to dispatch directly into those queues, requiring

no operating system kernel service transition or

services. This makes the full performance of the

platform accessible to the developer, limiting

software driver overheads.

 Hardware scheduling: HSA gives a mechanism

whereby the TCU engine hardware can switch

between application dispatch queues

automatically, without requiring operating

system intervention on each switch. The

operating system scheduler can characterize each

part of the switching sequence and still looks

after control. Hardware scheduling is quicker and

devours less power.

 Coherent memory region: HSA grasps a

completely coherent shared memory model, with

unified addressing. This provides developers with

the same coherent memory model that they

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 542

appreciate on SMP CPU systems. This enables

developers to compose applications that closely

couple LCU and TCU codes in popular design

patterns like producer-consumer.

HSA Support Libraries

The HSA platform is intended to support high-level

parallel programming languages and models,

including C++ AMP, C++, C#, CUDA, OpenCL,

OpenMP, Java and Python, to give some examples.

HSA-aware tools create program binaries that can

execute on HSA-enabled systems supporting multiple

instruction sets (commonly, one for the LCU and one

for the TCU) and furthermore can run on existing

architectures without HSA support (George Kyriazis,

2012).

Program binaries that can run on both LCUs and

TCUs contain CPU ISA (Instruction Set Architecture)

for the LCU and HSA Intermediate Language (HSAIL)

for the TCU. A finalizer converts HSAIL to TCU ISA.

The finalizer is regularly lightweight and might be

run at install time, compiler time, or program

execution time, contingent upon decisions made by

the platform implementation.

HSA API Level

This provides insight into the current tools and APIs

used in heterogeneous software development.

2.3 HSA INTERMEDIATE LANGUAGE (HSAIL)

HSAIL is a low level instruction set intended for

parallel compute in a shared virtual memory

environment. HSAIL is SIMT (Single-Instruction

Multiple-Thread) in form and does not dictate

hardware microarchitecture. It's intended for fast

compile time, moving most optimization to HL

compiler. And furthermore at an indistinguishable

level as PTX: an intermediate assembly or Virtual

Machine Target. It's represented as bit-code in a Brig

file format which help late binding of libraries

(Hedge, 2013).

HSAIL is the intermediate language for parallel

compute in HSA

 Generated by a high level compiler (LLVM, gcc,

Java VM, and so on)

 Compiled down to GPU ISA or other parallel

processor ISA by an IHV Finalizer

 Finalizer may execute at run time, install time or

build time, contingent upon platform type.

COMPUTE UNIFIED DEVICE ARCHITECTURE

(CUDA)

At a high level, CUDA is a proprietary tool for

execution of general purpose programs on NVIDIA

graphics cards. To utilize it, you should have

NVIDIA hardware and NVIDIA's compiler. CUDA is

an adaptable parallel programming model and

software platform for the GPU and other parallel

processors that enables the software engineer to

sidestep the graphics API and graphics interfaces of

the GPU and basically program in C or C++. The

CUDA programming model has a SPMD (single-

program multiple data) software style, in which a

software engineer composes a program for one

thread that is instanced and executed by many

threads in parallel on the multiple processors of the

GPU. Actually, CUDA additionally gives a facility to

programming multiple CPU cores too, so CUDA is an

environment for composing parallel programs for the

whole heterogeneous computer system (Nickolls &

Kirk, 2012).

OPEN COMPUTE LANGUAGE (OpenCL)

OpenCL is a recent and open heterogeneous

programming standard bolstered by the Khronos

Compute Working Group. OpenCL is an industry

standard programming language for parallel

computing, that gives a bound together programming

model to CPUs, GPUs, Smart Phones, Tablets,

Servers (Cloud). Enabling programming engineers to

compose programs once and runs cross-platform. It is

likewise upheld by all major hardware & software

vendors (Nickolls & Kirk, 2012).

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 543

HSA additionally uncovered a few advantages for

picking lower level programming interface for those

that need a definitive control and performance. A

portion of the advantages of utilizing OpenCL on

HSA incorporates

 Avoidance of inefficient duplicates

 Low latency dispatch

 Improved memory model

 Pointers shared amongst CPU and GPU

CUDA and OpenCL are compared by studying their

platform models, memory models, and execution

models. (Grossman, 2013)

Platform Model

A platform model indicates how the hardware

accessible to a software engineer on a specific system

is exhibited, both conceptual and through the API.

Both OpenCL and CUDA platform models depict

discrete devices which are overseen through an API

from a host program. These devices have separate

address spaces from the host program and utilize

explicit transfer to receive input and return output to

the host program. OpenCL and CUDA give

techniques to accessing metadata on every device in

a platform, (for example, memory size,

computational units accessible, and so forth).

At the highest granularity, an OpenCL installation

can contain at least one or more platforms, each of

which contains at least one or more devices. Inside

each OpenCL device there are multiple compute

units. Access to the platforms and devices in an

OpenCL program is more express and verbose than in

CUDA and requires the formation of contexts and

command queues. An OpenCL context is a gathering

of at least one or more OpenCL devices. OpenCL

command queues are utilized to issue commands to

devices, and each commands queue is unequivocally

connected with a solitary OpenCL device. CUDA is

by default less explicit than OpenCL, however

regardless it bolsters a considerable amount of similar

operations on a CUDA platform. Consistently, CUDA

has a selected device which CUDA operations are

verifiably issued to, however CUDA enables you to

unequivocally set a currently active device. While

there is a model of "streams" of work in CUDA like

OpenCL's command queues, CUDA streams are not

required to be expressly given by the developer to

each device operation.

Execution Model

The execution model of a heterogeneous

programming model portrays the conceptual model

for the execution of user-written computation. Both

OpenCL and CUDA are SIMD (Single-Instruction

Multiple-Data) programming models. The software

engineer composes a kernel for the device and

expressly shows it is for device execution utilizing

language keywords. Threads executing these kernels

utilize a special thread ID to choose their data

sources. Both OpenCL and CUDA utilize a batched

kernel invocation model where large numbers of

kernel instances or threads are launched in a single

API call. Both CUDA and OpenCL group individual

threads into little accumulations. Kernel invocation

dispatch numerous thread collections without a

moment's delay. One region in which OpenCL's and

CUDA's execution model veer is setting up a user-

written kernel for execution on a device. CUDA

compiles kernels for execution at compile-time

utilizing NVIDIA's compiler. OpenCL program and

OpenCL kernel are compiled or loaded at runtime.

An OpenCL program represents a collection of

executable functions. An OpenCL kernel object is

associated with a program object and determines a

single entry point to that program. This makes

OpenCL both a more adaptable and unequivocal

programming model than CUDA with regards to

executing computation on various sorts of devices.

Then again, every OpenCL program must set up

executable objects before executing them on a device

whereas CUDA prepares them for the user implicitly.

Memory Model

Both CUDA and OpenCL utilize discrete address

spaces to represent the memory available from a

device, even in the situations where an OpenCL host

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 544

application is executing utilizing an indistinguishable

memory as an OpenCL device (as is regularly the

situation when multi-core CPUs are gotten to

through OpenCL). All together for computation

executing on a device to have access to input values

from the host program, those values must have been

previously and explicitly copied to global buffers

related with that device. For the host application to

get output values from device computation, those

values must be duplicated out of global device buffers

and into the host program's address space. Both

CUDA and OpenCL give API calls to duplicate in and

duplicate out of global memory, and also approaches

to utilize special purpose memory, (for example,

texture memory) which may enhance performance

for the correct access patterns on certain hardware.

The CUDA and OpenCL kernel languages

additionally incorporate special keywords for

determining local, scratchpad memory available from

a kernel. This content of scratchpad memory has the

same lifetime from a thread group on a compute unit

and exhibits lower latency.

Limitations of HSA

The limitations/bottlenecks of HAS are considered

temporary as developments are still ongoing. These

limitations includes but not limited to (Hedge, 2013):

 Programmability

 Communication overhead

Related Works

Hsu, Chen, & Chen(2015) introduced a virtual

platform conforming to the HSA programing model

and the HSA Intermediate Language (HSAIL)

specification. This platform has an advanced

simulator demonstrating the cutting edge GPU

microarchitecture intended for Single Instruction

Multiple Data (SIMD) processing. The platform

additionally gives a simulation framework, including

OpenCL and OpenGL API, the driver for simulator,

and compilation flow from OpenCL kernel and

OpenGL shader program to HSAIL and lastly to a

custom instruction set. This platform was considered

with several benchmarks. OpenCL benchmarks are

for the most part the AMD sample programs.

OpenGL benchmarks are programs of classic shading

algorithms. On this platform, the performance issue

in various GPU microarchitecture, ISA configuration,

task scheduling algorithms and SIMD control

divergence handling mechanisms were broken down.

Arora, (2012) explored the engineering and

advancement of general purpose CPU-GPU systems;

which was begun by portraying cutting edge designs

in GPGPU (General-Purpose Graphics Processing

Unit). Considered answers for key GPGPU issues –

performance loss due to control-flow divergence and

poor scheduling. As an initial step, chip integration

offers better performance. In any case, lessened

latencies and increased bandwidth are enabling

optimizations previously not possible.

Comprehensive CPU-GPU system enhancement

methods, for example, CPU core optimizations,

redundancy elimination and the optimized design of

shared components was depicted. Furthermore,

opportunistic enhancements of the CPU-GPU system

by means of collaborative execution was considered.

Finally, recommended future work open doors for

CPU-GPU systems.

Grossman (2013) exhibited four heterogeneous

programming frameworks, each with the high-level

objective of enhancing programmability of

heterogeneous platforms while either keeping up or

enhancing performance. This objective was

accomplished by balancing architectural

transparency with programming abstractions. Each

of the programming models or runtime systems

introduced, positions itself at an alternate point

between accentuating programmability and

performance. Apparently every one of them lie

somewhere close to the low-level heterogeneous

programming models (like CUDA and OpenCL) and

high-level models (like OpenACC or CUDA libraries).

By striking a superior harmony amongst abstraction

and transparency, these programming models

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 545

empower software engineers to be constructive and

create elite applications on heterogeneous platform.

In any case, in spite of research effort in

heterogeneous programming models, it is anything

but difficult to contend that the issue of proficient

advancement of reasonably complex applications on

real-world, distributed, heterogeneous systems is to a

great extent unsolved.

Power, et al., (2013) built up a Heterogeneous System

Coherence (HSC) for CPU-GPU systems to relieve

the coherence bandwidth impacts of GPU memory

demands. HSC replaces a standard directory with a

region directory and adds a region buffer to the L2

cache. These structures enable the system to move

bandwidth from the coherence network to the high-

bandwidth direct-access bus without sacrificing

coherence. The outcomes were evaluated with a

subset of Rodinia benchmarks and the AMD APP

SDK and it demonstrated that HSC can enhance

performance contrasted with a conventional

directory protocol by an average of more than 2x and

a maximum of more than 4.5x. Furthermore, HSC

decreases the bandwidth to the directory by an

average of 94% and over 99% for four of the broken

down benchmarks

III. METHODOLOGY

Different works on HSA were inspected and different

conceivable routes by which HSA can be enhanced

were recognized and furthermore the current devices

and procedures utilized. These related works

evaluated, concentrated on improving on the

bottlenecks of HSA.

Table 1

Bottlenecks Procedures Results

Programming

model

Balancing architectural transparency

with programming abstractions.

By striking a superior harmony,

programmability of the

heterogeneous system architecture

can be achieved and maintained.

Thus, enhancing performance.

A virtual platform conforming to the

HSA programing model and the HSA

Intermediate Language (HSAIL)

specification

Explore microarchitecture design

and evaluate the performance issues

for both the OpenCL and

OpenGL applications.

Performance Chip integration Better performance

Communication

overhead

Heterogeneous System Coherence

replaces a standard directory with a

region directory and adds a region

buffer to the L2 cache.

Moves bandwidth from the

coherence network to the high-

bandwidth direct-access bus without

sacrificing coherence.

These procedures can be utilized individual or

combined in a number of ways to better mitigate the

bottlenecks identified, improve and fast track its

acceptance of Heterogeneous System Architecture in

our day to day computations.

These systems however effective and in spite of

research effort in heterogeneous system architecture,

it is anything but difficult to contend that the issue of

proficient advancement of realistically complex

applications on real-world, distributed,

heterogeneous systems is to a great extent unsolved.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Agbaje Michae et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 539-546

 546

IV. RESULT

The architectural path for the future is clear. An

open design, with published specifications and an

open source execution programming stack.

Permitting programming designs set up on

Symmetric Multi-Processor (SMP) systems relocate

to the heterogeneous world. Furthermore,

Heterogeneous cores cooperating consistently in

coherent memory, permitting low latency dispatch

and no software fault lines. This has brought about

game-changing HSA, parallel compute adoption at

tipping point, intense and developing programming

ecosystem and winning the heart and psyches of

developers.

V. CONCLUSION

Heterogeneity is an undeniably essential trend and

the market is at last beginning to make and receive

the important open benchmarks. HSA is a bound

together computing framework. It gives a single

address space available to both CPU and GPU (to

avoid information replicating), user-space queuing

(to limit communication overhead), and preemptive

context switching (for better quality of service) over

all computing elements in the system. HSA binds

together CPUs and GPUs into a single system with

common computing concepts, enabling the developer

to solve a greater variety of complex issues all the

more effortlessly. However, the current state of the

art of GPU high-performance computing is not

flexible enough for many of today’s computational

problems.

VI. REFERENCES

[1]. Arora, M. (2012). The Architecture and

Evolution of CPU-GPU Systems for General

Purpose Computing. San Diego.

[2]. George Kyriazis, A. (2012). Heterogeneous

System Architecture: A Technical Review.

[3]. Grossman, M. (2013). Programming Models

and Runtimes for Heterogeneous Systems.

Houston, Texas.

[4]. Hedge, M. (2013). Heterogeneous System

Architecture and the Software Ecosystem.

[5]. Hsu, Y., Chen, H.-Y., & Chen, C.-H. (2015). A

Heterogeneous System Architecture

Conformed GPU platform supporting OpenCL

and OpenGL.

[6]. Nickolls, J., & Kirk, D. (2009). Appendix A:

Graphics and omputing GPUs.

[7]. Nickolls, J., & Kirk, D. (2012). Appendix A:

Graphics and Computing GPUs.

[8]. Paul. (2014, August 24). The History of the

Multi core processor. Retrieved from

BurnWorld.com: www.burnworld.com/the-

history-of-the-multi-core-processor/

[9]. Power, J., Basu, A., Gu, J., Puthoor, S.,

Beckmann, B. M., Hill, M. D.,.Wood, D. A.

(2013). Heterogeneous System Coherence for

Integrated CPU-GPU Systems.

[10]. Sato, T., Mori, H., Yano, R., & Hayashida, T.

(2012). Importance of Single-Core Performance

in the Multicore Era. Thirty-Fifth Australasian

Computer Science Conference (ACSC 2012).

Melbourne, Australia.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

