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ABSTRACT 
 

Flash memory has characteristics of asymmetric I/O latencies for read, write and erase operations and out-of-

place update. Thus, buffering policy for flash based systems has to consider these properties to improve the 

overall performance. CFLRU is one of the flash aware buffer replacement policies. It divides set of pages into 

two regions, working region and clean-first region, and then tries to replace clean pages from clean first region. 

Size of clean-first region is called window size (W). This research evaluates impacts of W in performance of 

CFLRU page replacement policy and concluded that using larger window sizes provides better performance. 

Hence, window having size more that 70% of total buffer size is recommended.  
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I. INTRODUCTION 

 
Flash memory is an electronic non-volatile computer 

storage medium that can be electrically erased and 

reprogrammed. Flash memory has been gaining 

popularity in mobile embedded systems as non-

volatile storage due to its characteristics such as small 

and lightweight form factor, solid-state reliability, 

and low power consumption. The emergence of 

single flash memory chip with several gigabytes 

capacity makes a strong tendency to replace 

magnetic disk with flash memory for the secondary 

storage of mobile computing devices such as tablet 

PCs, PDAs, and smart phones [1,2]. 

 

The characteristics of flash memory are significantly 

different from magnetic disks. First, flash memory 

has no latency associated with the mechanical head 

movement to locate the proper position to read or 

write data. Second, flash memory has asymmetric 

read and write operation characteristic in terms of 

performance and energy consumption. Third, flash 

memory does not support in-place update; the write 

to the same page cannot be done before the page is 

erased. Thus, as the number of write operations 

increases so does the number of erase operations. 

Erase operations are slow and power-wasting that 

usually decreases system performance. Finally, blocks 

of flash memory are worn out after the specified 

number of write/erase operations. Therefore, erase 

operations should be avoided for better performance 

and longer flash memory lifetimes. To avoid wearing 

specific segments out which would affect the 

usefulness of the whole flash memory, data should be 

written evenly to all segments. This is called even 

wearing or wear-leveling [3,4].  

 

Buffer replacement algorithms used in an OS or a 

DBMS in general assume that the speed of the read 

and write operations are about the same, which is 

true in the case of hard disks. The different 

characteristics of flash memory make it infeasible for 

system developed for hard disks as secondary storage 

to readily be used for the flash memory, and 
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therefore force a reexamination of many key parts of 

the system architecture. Traditional performance 

metric such as „buffer hit ratio‟ is not sufficient as 

performance indicator for flash based system. One 

naïve guide for this scheme may be stated as follows: 

“Try to reduce the number of writes/erases at the 

expense of the read operations.” A new performance 

metric such as write count is also needed, in addition 

to the „buffer hit ratio‟ [5]. 

 

II. OVERVIEW OF CFLRU POLICY 

 

When cache replacement occurs, two kinds of 

replacement costs are involved. One is generated  

when a requested page is fetched from secondary 

storage to the page cache in RAM. Using Belady‟s 

MIN algorithm this cost can be minimized by 

selecting a victim that has the largest forward 

distance in the future references. Among online 

algorithms, LRU has been commonly used for 

replacement algorithm because it exploits the 

property of locality in references. Another cost is 

generated when a page is evicted from the page cache 

to secondary storage, that is, flash memory. This cost 

can be minimized by selecting a clean page for 

eviction. A clean page contains the same copy of the 

original data in flash memory thus the clean page can 

be just dropped from the page cache when it is 

evicted by the replacement policy. Satisfying only 

one kind of replacement cost would benefit from its 

advantage, but for a long term, it would affect the 

other kind of replacement cost. For example, a 

replacement policy might decide to keep dirty pages 

in cache as many as possible to save the write cost on 

flash memory. However, by doing this, the cache 

will run out of space, and consequently the number 

of cache misses will be increased dramatically, which, 

in turn, will increase the replacement cost of reading 

requested  from flash memory. On the other hand, a 

replacement policy that focuses mainly on increasing 

the cache hit count will evict dirty pages, which will 

increase the replacement cost of writing evicted 

pages into flash memory. Thus, a sophisticated 

scheme to compromise both sides of efforts is needed 

to minimize the total cost [6].  

 

CFLRU (Clean-First LRU) page replacement policy is 

used for this purpose, which is modified from the 

LRU algorithm. CFLRU divides the LRU list into two 

regions to find a minimal cost point, as shown in 

figure below. The working region consists of recently 

used pages and most of cache hits are generated in 

this region. The clean-first region consists of pages 

which are candidates for eviction. CFLRU selects a 

clean page to evict in the clean-first region first to 

save flash write cost. If there is no clean page in this 

region, a dirty page at the end of the LRU list is 

evicted [6]. For example, under the LRU replacement 

algorithm, the last page in the LRU list is always 

evicted first. Thus, the priority for being a victim 

page is in the order of P8, P7, P6, and P5. However, 

under the CFLRU replacement algorithm, it is in the 

order of P7, P5, P8, and P6. 

 
Figure 1. CFLRU Queue 

 

The size of the clean-first region is called a window 

size, w. A large window size will increase the cache 

miss rate and a small window size will increase the 

number of evicted dirty pages, that is, the number of 

flash write operations. Therefore it is important to 

adjust the window size properly. This research has 

evaluated static window sized CFLRU page 

replacement policy empirically by taking different 

window sizes and suggested optimal window size for 

the policy. 

III. RELATED WORK 

 

Clean First Dirty Clustered (CFDC) [7] manages the 

buffer in two regions: the working region W for 

keeping hot pages that are frequently and recently 

revisited, and the priority region P responsible for 
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optimizing replacement costs by assigning varying 

priorities to page clusters. A parameter , called 

priority window, determines the size ratio of P 

relative to the total buffer. Therefore, if the buffer 

has B pages, then P contains  pages and the 

remaining (1-)*B pages are managed in W. Various 

conventional replacement policies can be used to 

maintain high hit ratios in W and, therefore, prevent 

hot pages from entering P. CFDC improves the 

efficiency of buffer manager by flushing pages in 

clustered fashion based on the observation that flash 

writes with strong spatial locality can be served by 

flash disks more efficiently than random writes. In 

paper [7] CFDC has been compared with LRU and 

CFLRU for different four workloads in database 

engine.  The results show CFDC  outperforms both 

competing policies, with a performance gain between 

14%  and 41% over CFLRU., in turn, is only slightly 

better than LRU with a maximum performance gain 

of 6%. 

 

LRU-WSR [8] is a flash-aware algorithm based on 

LRU and Second Chance , using only a single list as 

auxiliary data structure. The idea is to evict clean and 

cold-dirty pages and keep the hot-dirty pages in 

buffer as long as possible. When a victim page is 

needed, it starts searching from the LRU end of the 

list. If a clean page is found, it will be returned 

immediately (LRU and clean-first strategy). If a dirty 

page marked as “cold” is found, it will also be 

returned;  otherwise, it will be marked “cold” 

(Second Chance), moved to the MRU (most-recently 

used) end of the list, and the search continues. 

Although LRU-WSR considers the hot/cold property 

of dirty pages, which is not tackled by CFLRU, it has 

high dependency on the write locality of workloads. 

It shows low performance in case of low write 

locality, which may cause dirty pages to be quickly 

evicted. In paper [5], LRU-WSR has been compared 

with LRU, CFLRU algorithms for different workloads 

collected from PostgreSQL, GCC, Viewperf and 

Cscope. LRU-WSR has been found 1.4 times faster 

than LRU.  In most of the cases, LRU-WSR has 

higher hit ratio and lower write count than others. 

The authors of CCF-LRU [9] further refine the idea 

of LRU-WSR by distinguishing between cold-clean 

and hot clean pages. It maintains two LRU queues, a 

cold clean queue and a mixed queue to maintain 

buffer pages. The cold clean queue stores cold clean 

pages (first referenced pages) while mixed queue 

stores dirty pages or hot clean pages. It always selects 

victim from cold clean queue and if cold clean queue 

is empty then employs same policy as that of LRU-

WSR to select dirty page from mixed queue. This 

algorithm focuses on reference frequency of clean 

pages and has little consideration on reference 

frequency of dirty pages. Besides, the CCF-LRU has 

no mechanism to control length of cold clean queue, 

which will lead to frequent eviction of recently read 

pages in the cold clean queue and lower the hit ratio.  

In paper [6] CCF- LRU has been compared with LRU, 

CFLRU and LRU-WSR with different four workloads. 

The results show that CCF-LRU performs better than 

LRU, CFLRU, and LRU-WSR with respect to hit rate, 

write count and run time.  

 

LIRS-WSR is an improvement of LIRS so that it can 

suit the requirements of flash-based systems. It 

integrates write sequence reordering (WSR) 

technique to original LIRS algorithm to reduce the 

number of page writes to flash memory. In paper [10] 

LIRS-WSR has been compared with LRU, CFLRU, 

LIRS and ARC for four different workloads: 

PostgreSQL, gcc, Viewperf and Cscope.  LIRS-WSR 

has hit ratio very close approximate to LIRS and has 

higher hit ratio than other algorithms. LIRS-WSR 

has minimum write count than all other algorithms. 

In case of run time, LIRS-WSR is 2 times faster than 

LRU and 1.25 times faster than LIRS algorithm.   

 

Adaptive double-LRU (AD-LRU) takes into account 

both reference frequency of clean pages and dirty 

pages and has a new mechanism to control the length 

of cold queue to avoid drop in hit ratio. In paper [11] 

AD-LRU has been compared with LRU, CFLRU, 

LRU-WSR, CCF- LRU algorithms for different four 

workloads: random, read-most, write-most and zipf 

traces. AD- LRU has been found better than other 
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algorithms in terms of hit rate, write count and run 

time.  In specific, AD-LRU reduced write count 

under zipf trace by 23%, 17% and 21% compared to 

LRU, CFLRU and LRU-WSR respectively.  

 

IV. DATA COLLECTION 

 

In this research work four types of synthetic traces 

[11]  have been used as input to simulated algorithm 

i.e., random trace, read- most trace (e.g., of decision 

support systems), write-most trace (e.g., of OLTP 

systems), and Zipf trace as Workload1, Workload  2, 

Workload 3 and Workload 4 respectively. These data 

are real memory traces. Workload represents 

different locality of memory reference pattern that 

are generated during execution of process in real OS. 

There are total 100,000 page references in each of the 

first three traces, which are restricted to a set of 

pages whose numbers range from 0 to 49,999. The 

total number of page references in the Zipf trace is 

set to 500,000 in order to obtain a good 

approximation, while the page numbers still fall in 

[0, 49999].  Zipf trace has a referential locality 

“20/80” meaning that eighty percent of the 

references deal with the most active twenty percent 

of the pages. Random, Read-most and write-most 

traces have a referential locality 50/50, 90/10, and 

10/90 respectively. 

 

V. RESULT ANALYSIS 

 

 
(a) 

 

 
(b) 

Figure 2. Graph for Random Trace (a) For Cache 

Size=4096 (b) For Cache Size=8192 

 

 
(a) 

 
(b) 

Figure 3. Graph for Read-most Trace (a) For Cache 

Size=4096 (b) For Cache Size=8192 



Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 819 

 
(a)  

 
(b) 

Figure 4. Graph for Write-most Trace (a) For Cache 

Size=4096 (b) For Cache Size=8192 

 

 
(a) 

 
(b)  

Figure 5. Graph for Zipf Trace (a) For Cache 

Size=4096 (b) For Cache Size=8192 

 

From above graphs we can observe that in case of 

graphs for workloads having uniform distribution 

(Figure 2 to Figure 4) of page references, number of 

page faults remains almost stagnant when we increase 

window size but number of write counts decreases 

significantly for increased window sizes. On the other 

hand, if we look at the graphs of workloads having 

high reference locality (Figure 5), we can observe that 

number of page faults decreases slightly along with 

increased window size but number of write counts 

again decreases significantly. 

 

Further if we compare graph of figure 4 (graph for 

write-most trace) with other graphs, significant 

difference cannot be viewed. From this it can be 

observed that increased window size reduces numbers 

of write counts independently to the number of write 

operation contained in memory traces.  

 

VI. CONCLUSION  

 

Flash memory has become an alternative to the 

magnetic disks, which brings new challenges to 

traditional disk based system. To efficiently support 

the characteristics of flash storage devices, traditional 

buffering approaches need to be revised to take into 

account the imbalanced I/O property of flash 

memory. CFLRU prefers lest recently used clean 

pages while selecting victim page. This is because 

replacement of dirty pages requires writing them to 

flash memory, which is costly operation compared to 

reading a page in case of flash memories. To achieve 

this objective CFLRU divides set of pages into two 

regions, working region and clean-first region, and 

then tries to replace clean pages from clean first 

region. If no clean page is found in the region it 

simply uses LRU policy. Size of clean-first region is 

called window size (W). This research evaluates 

impacts of W in performance of CFLRU page 

replacement policy. 

 

From the analysis it can be viewed that in case of 

memory traces having uniform distribution of pages, 
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using higher window sizes decreases number of write 

counts without increasing number of page faults. At 

the same time we can see that that in case of memory 

traces having high locality of reference of pages, 

using higher window sizes decreases number of write 

counts significantly as well as decreases number of 

page faults slightly. Besides this, we have observed 

that ratio of write operations contained in memory 

traces does not affect performance of CFLRU policy 

with increased window sizes.  

 

Thus it can be concluded that using larger window 

sizes provides better performance in all types of 

memory traces. Hence, window having size more 

that 70% of total buffer size is recommended for 

CFLRU policy.  
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