
CSEIT1831150 | Received : 20 Jan 2018 | Accepted : 07 Feb 2018 | January-February-2018 [(3) 1 : 815-820]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

815

Empirical Evaluation of Effect of Window size on Static

Window-Sized CFLRU Page Replacement Policy for Flash

Based Systems
Arjun Singh Saud

Central Department of Computer Science and IT, TU, Nepal

ABSTRACT

Flash memory has characteristics of asymmetric I/O latencies for read, write and erase operations and out-of-

place update. Thus, buffering policy for flash based systems has to consider these properties to improve the

overall performance. CFLRU is one of the flash aware buffer replacement policies. It divides set of pages into

two regions, working region and clean-first region, and then tries to replace clean pages from clean first region.

Size of clean-first region is called window size (W). This research evaluates impacts of W in performance of

CFLRU page replacement policy and concluded that using larger window sizes provides better performance.

Hence, window having size more that 70% of total buffer size is recommended.

Keywords : Flash Memory Systems, Buffer Replacement Algorithm, Clean-First LRU, Write Count, Page Fault

I. INTRODUCTION

Flash memory is an electronic non-volatile computer

storage medium that can be electrically erased and

reprogrammed. Flash memory has been gaining

popularity in mobile embedded systems as non-

volatile storage due to its characteristics such as small

and lightweight form factor, solid-state reliability,

and low power consumption. The emergence of

single flash memory chip with several gigabytes

capacity makes a strong tendency to replace

magnetic disk with flash memory for the secondary

storage of mobile computing devices such as tablet

PCs, PDAs, and smart phones [1,2].

The characteristics of flash memory are significantly

different from magnetic disks. First, flash memory

has no latency associated with the mechanical head

movement to locate the proper position to read or

write data. Second, flash memory has asymmetric

read and write operation characteristic in terms of

performance and energy consumption. Third, flash

memory does not support in-place update; the write

to the same page cannot be done before the page is

erased. Thus, as the number of write operations

increases so does the number of erase operations.

Erase operations are slow and power-wasting that

usually decreases system performance. Finally, blocks

of flash memory are worn out after the specified

number of write/erase operations. Therefore, erase

operations should be avoided for better performance

and longer flash memory lifetimes. To avoid wearing

specific segments out which would affect the

usefulness of the whole flash memory, data should be

written evenly to all segments. This is called even

wearing or wear-leveling [3,4].

Buffer replacement algorithms used in an OS or a

DBMS in general assume that the speed of the read

and write operations are about the same, which is

true in the case of hard disks. The different

characteristics of flash memory make it infeasible for

system developed for hard disks as secondary storage

to readily be used for the flash memory, and

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 816

therefore force a reexamination of many key parts of

the system architecture. Traditional performance

metric such as „buffer hit ratio‟ is not sufficient as

performance indicator for flash based system. One

naïve guide for this scheme may be stated as follows:

“Try to reduce the number of writes/erases at the

expense of the read operations.” A new performance

metric such as write count is also needed, in addition

to the „buffer hit ratio‟ [5].

II. OVERVIEW OF CFLRU POLICY

When cache replacement occurs, two kinds of

replacement costs are involved. One is generated

when a requested page is fetched from secondary

storage to the page cache in RAM. Using Belady‟s

MIN algorithm this cost can be minimized by

selecting a victim that has the largest forward

distance in the future references. Among online

algorithms, LRU has been commonly used for

replacement algorithm because it exploits the

property of locality in references. Another cost is

generated when a page is evicted from the page cache

to secondary storage, that is, flash memory. This cost

can be minimized by selecting a clean page for

eviction. A clean page contains the same copy of the

original data in flash memory thus the clean page can

be just dropped from the page cache when it is

evicted by the replacement policy. Satisfying only

one kind of replacement cost would benefit from its

advantage, but for a long term, it would affect the

other kind of replacement cost. For example, a

replacement policy might decide to keep dirty pages

in cache as many as possible to save the write cost on

flash memory. However, by doing this, the cache

will run out of space, and consequently the number

of cache misses will be increased dramatically, which,

in turn, will increase the replacement cost of reading

requested from flash memory. On the other hand, a

replacement policy that focuses mainly on increasing

the cache hit count will evict dirty pages, which will

increase the replacement cost of writing evicted

pages into flash memory. Thus, a sophisticated

scheme to compromise both sides of efforts is needed

to minimize the total cost [6].

CFLRU (Clean-First LRU) page replacement policy is

used for this purpose, which is modified from the

LRU algorithm. CFLRU divides the LRU list into two

regions to find a minimal cost point, as shown in

figure below. The working region consists of recently

used pages and most of cache hits are generated in

this region. The clean-first region consists of pages

which are candidates for eviction. CFLRU selects a

clean page to evict in the clean-first region first to

save flash write cost. If there is no clean page in this

region, a dirty page at the end of the LRU list is

evicted [6]. For example, under the LRU replacement

algorithm, the last page in the LRU list is always

evicted first. Thus, the priority for being a victim

page is in the order of P8, P7, P6, and P5. However,

under the CFLRU replacement algorithm, it is in the

order of P7, P5, P8, and P6.

Figure 1. CFLRU Queue

The size of the clean-first region is called a window

size, w. A large window size will increase the cache

miss rate and a small window size will increase the

number of evicted dirty pages, that is, the number of

flash write operations. Therefore it is important to

adjust the window size properly. This research has

evaluated static window sized CFLRU page

replacement policy empirically by taking different

window sizes and suggested optimal window size for

the policy.

III. RELATED WORK

Clean First Dirty Clustered (CFDC) [7] manages the

buffer in two regions: the working region W for

keeping hot pages that are frequently and recently

revisited, and the priority region P responsible for

C

D

Clean

Dirty

Working Region Clean-First Region

Window (w)

C

P5

D

P6

C

P7

D

P8

D

P1

C

P2

D

P3

C

P4

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 817

optimizing replacement costs by assigning varying

priorities to page clusters. A parameter , called

priority window, determines the size ratio of P

relative to the total buffer. Therefore, if the buffer

has B pages, then P contains  pages and the

remaining (1-)*B pages are managed in W. Various

conventional replacement policies can be used to

maintain high hit ratios in W and, therefore, prevent

hot pages from entering P. CFDC improves the

efficiency of buffer manager by flushing pages in

clustered fashion based on the observation that flash

writes with strong spatial locality can be served by

flash disks more efficiently than random writes. In

paper [7] CFDC has been compared with LRU and

CFLRU for different four workloads in database

engine. The results show CFDC outperforms both

competing policies, with a performance gain between

14% and 41% over CFLRU., in turn, is only slightly

better than LRU with a maximum performance gain

of 6%.

LRU-WSR [8] is a flash-aware algorithm based on

LRU and Second Chance , using only a single list as

auxiliary data structure. The idea is to evict clean and

cold-dirty pages and keep the hot-dirty pages in

buffer as long as possible. When a victim page is

needed, it starts searching from the LRU end of the

list. If a clean page is found, it will be returned

immediately (LRU and clean-first strategy). If a dirty

page marked as “cold” is found, it will also be

returned; otherwise, it will be marked “cold”

(Second Chance), moved to the MRU (most-recently

used) end of the list, and the search continues.

Although LRU-WSR considers the hot/cold property

of dirty pages, which is not tackled by CFLRU, it has

high dependency on the write locality of workloads.

It shows low performance in case of low write

locality, which may cause dirty pages to be quickly

evicted. In paper [5], LRU-WSR has been compared

with LRU, CFLRU algorithms for different workloads

collected from PostgreSQL, GCC, Viewperf and

Cscope. LRU-WSR has been found 1.4 times faster

than LRU. In most of the cases, LRU-WSR has

higher hit ratio and lower write count than others.

The authors of CCF-LRU [9] further refine the idea

of LRU-WSR by distinguishing between cold-clean

and hot clean pages. It maintains two LRU queues, a

cold clean queue and a mixed queue to maintain

buffer pages. The cold clean queue stores cold clean

pages (first referenced pages) while mixed queue

stores dirty pages or hot clean pages. It always selects

victim from cold clean queue and if cold clean queue

is empty then employs same policy as that of LRU-

WSR to select dirty page from mixed queue. This

algorithm focuses on reference frequency of clean

pages and has little consideration on reference

frequency of dirty pages. Besides, the CCF-LRU has

no mechanism to control length of cold clean queue,

which will lead to frequent eviction of recently read

pages in the cold clean queue and lower the hit ratio.

In paper [6] CCF- LRU has been compared with LRU,

CFLRU and LRU-WSR with different four workloads.

The results show that CCF-LRU performs better than

LRU, CFLRU, and LRU-WSR with respect to hit rate,

write count and run time.

LIRS-WSR is an improvement of LIRS so that it can

suit the requirements of flash-based systems. It

integrates write sequence reordering (WSR)

technique to original LIRS algorithm to reduce the

number of page writes to flash memory. In paper [10]

LIRS-WSR has been compared with LRU, CFLRU,

LIRS and ARC for four different workloads:

PostgreSQL, gcc, Viewperf and Cscope. LIRS-WSR

has hit ratio very close approximate to LIRS and has

higher hit ratio than other algorithms. LIRS-WSR

has minimum write count than all other algorithms.

In case of run time, LIRS-WSR is 2 times faster than

LRU and 1.25 times faster than LIRS algorithm.

Adaptive double-LRU (AD-LRU) takes into account

both reference frequency of clean pages and dirty

pages and has a new mechanism to control the length

of cold queue to avoid drop in hit ratio. In paper [11]

AD-LRU has been compared with LRU, CFLRU,

LRU-WSR, CCF- LRU algorithms for different four

workloads: random, read-most, write-most and zipf

traces. AD- LRU has been found better than other

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 818

algorithms in terms of hit rate, write count and run

time. In specific, AD-LRU reduced write count

under zipf trace by 23%, 17% and 21% compared to

LRU, CFLRU and LRU-WSR respectively.

IV. DATA COLLECTION

In this research work four types of synthetic traces

[11] have been used as input to simulated algorithm

i.e., random trace, read- most trace (e.g., of decision

support systems), write-most trace (e.g., of OLTP

systems), and Zipf trace as Workload1, Workload 2,

Workload 3 and Workload 4 respectively. These data

are real memory traces. Workload represents

different locality of memory reference pattern that

are generated during execution of process in real OS.

There are total 100,000 page references in each of the

first three traces, which are restricted to a set of

pages whose numbers range from 0 to 49,999. The

total number of page references in the Zipf trace is

set to 500,000 in order to obtain a good

approximation, while the page numbers still fall in

[0, 49999]. Zipf trace has a referential locality

“20/80” meaning that eighty percent of the

references deal with the most active twenty percent

of the pages. Random, Read-most and write-most

traces have a referential locality 50/50, 90/10, and

10/90 respectively.

V. RESULT ANALYSIS

(a)

(b)

Figure 2. Graph for Random Trace (a) For Cache

Size=4096 (b) For Cache Size=8192

(a)

(b)

Figure 3. Graph for Read-most Trace (a) For Cache

Size=4096 (b) For Cache Size=8192

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 819

(a)

(b)

Figure 4. Graph for Write-most Trace (a) For Cache

Size=4096 (b) For Cache Size=8192

(a)

(b)

Figure 5. Graph for Zipf Trace (a) For Cache

Size=4096 (b) For Cache Size=8192

From above graphs we can observe that in case of

graphs for workloads having uniform distribution

(Figure 2 to Figure 4) of page references, number of

page faults remains almost stagnant when we increase

window size but number of write counts decreases

significantly for increased window sizes. On the other

hand, if we look at the graphs of workloads having

high reference locality (Figure 5), we can observe that

number of page faults decreases slightly along with

increased window size but number of write counts

again decreases significantly.

Further if we compare graph of figure 4 (graph for

write-most trace) with other graphs, significant

difference cannot be viewed. From this it can be

observed that increased window size reduces numbers

of write counts independently to the number of write

operation contained in memory traces.

VI. CONCLUSION

Flash memory has become an alternative to the

magnetic disks, which brings new challenges to

traditional disk based system. To efficiently support

the characteristics of flash storage devices, traditional

buffering approaches need to be revised to take into

account the imbalanced I/O property of flash

memory. CFLRU prefers lest recently used clean

pages while selecting victim page. This is because

replacement of dirty pages requires writing them to

flash memory, which is costly operation compared to

reading a page in case of flash memories. To achieve

this objective CFLRU divides set of pages into two

regions, working region and clean-first region, and

then tries to replace clean pages from clean first

region. If no clean page is found in the region it

simply uses LRU policy. Size of clean-first region is

called window size (W). This research evaluates

impacts of W in performance of CFLRU page

replacement policy.

From the analysis it can be viewed that in case of

memory traces having uniform distribution of pages,

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 820

using higher window sizes decreases number of write

counts without increasing number of page faults. At

the same time we can see that that in case of memory

traces having high locality of reference of pages,

using higher window sizes decreases number of write

counts significantly as well as decreases number of

page faults slightly. Besides this, we have observed

that ratio of write operations contained in memory

traces does not affect performance of CFLRU policy

with increased window sizes.

Thus it can be concluded that using larger window

sizes provides better performance in all types of

memory traces. Hence, window having size more

that 70% of total buffer size is recommended for

CFLRU policy.

VII. REFERENCES

[1]. L. P. Chang, T. W. Kuo, Efficient Management

for Large-Scale Flash-Memory Storage

Systems with Resource Conservation, ACM

TOS 1 (4), 2005.

[2]. M. L. Chiang, C.H. Paul, R.C. Chang, Manage

Flash Memory in Personal Communicate

Devices. In: Proc. of IEEE Intl. Symposium on

Consumer Electronics, IEEE Computer

Society Press, Los Alamitos, 1997.

[3]. Jihyun In, Ilhoon Shin, Hyojun Kim, "SWL: A

Search-While-Load Demand Paging Scheme

with NAND Flash Memory", ACM, 2007

[4]. C. Park, J.U. Kang, S.Y. Park and J.S. Kim,

"Energy aware demand paging on NAND flash-

based embedded storages", Proc. of the

international symposium on Low power

electronics and design, 2004.

[5]. J. Kim, J. M. Kim, S. H. Noh, S. L. Min, Y. Cho,

A Space-Efficient Flash Translation Layer for

Compact Flash Systems, IEEE Transactions on

Consumer Electronics, Vol. 48, No. 2, May

2002.

[6]. S.Y. Park, D. Jung, J.U. Kang, J.S. Kim, and J.

Lee, "CFLRU: A replacement algorithm for

flash memory," in Proc. Int. Conf. Compilers,

Arch. Synthesis Embedded System, 2006

[7]. Y. Ou, T. Harder, P. Jin, "CFDC: a Flash-Aware

Replacement Policy for Database Buffer

Management", Proc. of the 5th International

Workshop on Data Management on New

Hardware, ACM, 2009.

[8]. H. Jung, H. Shim, S. Park, S. Kang, J. Cha,

"LRU-WSR: Integration of LRU and Writes

Sequence Reordering for Flash Memory", IEEE

Trans. On Consumer Electronics, 2008.

[9]. Z. Li, P. Jin, X. Su, K. Cui, L. Yue, "CCF-LRU:

A New Buffer Replacement Algorithm for

Flash Memory", Trans. on Cons. Electr, 2009.

[10]. H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, J.

Cha, "LIRS-WSR: Integration of LIRS and

Writes Sequence Reordering for Flash

Memory", ICCSA of LNCS, 2007.

[11]. P. Jin, Y. Ou, T. Harder, Z. Li, AD-LRU: An

Efficient Buffer Replacement Algorithm for

Flash-Based Databases, Data Knowledge

Engineering, 2012.

