
CSEIT1831191 | Received : 15 Jan 2018 | Accepted : 05 Feb 2018 | January-February-2018 [(3) 1 : 776-781]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

776

Performance Analysis of OpenGL Java Bindings with Graphics
Scan Conversion Algorithms

Naresh Purohit*1, Rajendra Purohit2
*1 Department of Computer Science Engineering, Mits - Jadan , Pali, Rajasthan, India

2 Research Scholar, Rajasthan Technical University, Kota, Rajasthan, India

ABSTRACT

This paper presents a Performance Analysis of OPNGL with Java bindings i.e. Light Weight Java Game Library

(LWJGL).Three different sections, i.e. Line Rendering, Circle Rendering, and Image Rendering have been

selected as the benchmarks for extensive analysis of the performance gaps between the two. The results show

the performance of LWJGL with rendering algorithms to display from a single pixel to some large images in the

screen on the basis of execution time analysis. LJWJGL is a Java-Binding of OPENGL that enables developing

portable, interactive 2D and 3D graphics applications.

Keywords: OpenGL, LWJGL, Rendering, Pixel, Java Bindings.

I. INTRODUCTION

The Computer Graphics is one of the most effective

and commonly used methods to communicate the

processed information to the user. It displays the

information in the form of graphics objects such as

pictures, charts, graphs and diagram instead of simple

text.

In computer graphics, pictures or graphics objects are

presented as a collection of discrete picture elements

called pixels. The pixel is the smallest addressable

screen element.[4]

A. Rendering

Rendering is the process of generating an image from

a model, by means of a software program. The model

is a description of three dimensional objects in a

strictly defined language or data structure. It would

contain geometry, viewpoint, texture and lighting

information.

Figure 1. Rendering Process Block Diagram

The image is a digital image or raster graphics image.

The term may be by analogy with an "artist's

rendering" of a scene. 'Rendering' is also used to

describe the process of calculating effects in a video

editing file to produce final video output

B. LWJGL (Light Weight Java Game Library)

LWJGL is a Java binding for OPNGL API. The

Lightweight Java Game Library (LWJGL) is an open-

source Java software library for video game

developers. It exposes high performance cross-

platform libraries commonly used in developing

video games and multimedia titles. It provides a way

for Java developers to get access to resources that are

otherwise unavailable or poorly implemented on the

existing Java platform.[3]

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 777

Figure 2. OpenGL Flow Diagram

II. RENDERING OBJECTS

In this paper, the rendering is done on linear and

non-linear objects. In linear objects, straight line

algorithms and for non-linear objects, circle

algorithms are analysed.

A. Line Drawing

A line drawing algorithm is a graphical algorithm for

approximating a line segment on discrete graphical

media. On discrete media, such as pixel-based

displays and printers, line drawing requires such an

approximation (in nontrivial cases). Basic algorithms

rasterizing lines in one color. A better representation

with multiple color gradations requires an advanced

process, spatial anti-aliasing. A line connects two

points. It is a basic element in graphics. To draw a

line, we need two points between which we can

draw a line.

A.1 LSI Algorithm

The Cartesian slope-intercept equation for a straight

line is with m representing the slope of the line and b

as the y intercept. [5]Given that the two endpoints of

a he segment are specified at positions (x1, y1) and

(x2, y2), as shown in Fig. , we can determine values

for the slope m and y intercept b with the following

calculations:

Figure 3. Drawing points on Graph by Line Equation

Y=MX+B

Step 1: Calculate

dx = x2-x1

dy = y2-y1;

m = dy/dx;

b = y1-m*x1;

Step 2: check if if(m<=1)

Then

Calculate y=m*x+b

For loop x1 to x2 times each iteration

Draw pixel(x,y) position

Else

Calculate

x = (1/m)*y+b;

For loop y1 to y2 times each iteration

Draw pixel(x,y) position

Table 1. LSI Rendering through LWJGL

Execution

no.

Machine

Execution

Time

Average

Time

1 218.690

227.911

2 232.882

3 246.748

4 217.392

5 223.843

Time in Milliseconds

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 778

Chart 1. LSI Rendering through LWJGL

A.2 DDA Algorithm

The digital differential analyser (DDA) is a scan-

conversion line algorithm based on calculating either

dy or dx. Using dx or dy, We sample the line at unit

intervals in one coordinate and determine

corresponding integer values nearest the line path for

the other coordinate.[6]

Step 1 : Get the input of two end points

(X0,Y0)(X0,Y0) and (X1,Y1)(X1,Y1).

Step 2: Calculate the difference between two end

points.

dx = X1 - X0

dy = Y1 - Y0

Step 3: Based on the calculated difference in step-2,

you need to identify the number of steps to put pixel.

If dx > dy, then you need more steps in x coordinate;

otherwise in y coordinate.

if (absolute(dx) > absolute(dy))

Steps = absolute(dx);

else

Steps = absolute(dy);

Step 4: Calculate the increment in x coordinate and y

coordinate.

Xincrement = dx / (float) steps;

Yincrement = dy / (float) steps;

Step 5: Put the pixel by successfully incrementing x

and y coordinates accordingly and complete the

drawing of the line.

for(int v=0; v < Steps; v++)

 x = x + Xincrement;

 y = y + Yincrement;

 putpixel(Round(x), Round(y));

Table 2. DDA Rendering through LWJGL

Execution

no.

Machine

Execution

Time

Average

Time

1 210.320

221.631

2 222.683

3 227.246

4 219.858

5 228.048

Time in Milliseconds

Chart 2. DDA Rendering through LWJGL

A.3 Bresenham's Line Algorithm

The Bresenham algorithm is another incremental

scan conversion algorithm. The big advantage of

this algorithm is that, it uses only integer

calculations. Moving across the x axis in unit

intervals and at each step choose between two

different y coordinates.[1]

Step 1: Input the two end-points of line, storing the

left end-point in (x0,y0)(x0,y0).

Step 2: Plot the point (x0,y0)(x0,y0).

Step 3: Calculate the constants dx, dy, 2dy, and (2dy

– 2dx) and get the first value for

the decision parameter as −

p0=2dy−dx

Step 4: At each Xk along the line, starting at k = 0,

perform the following test −

If pk < 0, the next point to plot is (xk+1,yk)and

pk+1=pk+2dy

Otherwise,

200

205

210

215

220

225

230

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 779

pk+1=pk+2dy−2dx

Step 5: Repeat step 4 (dx – 1) times.

For m > 1, find out whether you need to increment x

while incrementing y each time.

Table 3.Bresenham's Line Rendering through LWJGL

Execution

no.

Machine

Execution Time

Average

Time

1 100.419

106.6434

2 100.257

3 103.189

4 119.704

5 109.648

Time in Milliseconds

Chart 3. Bresenham's Line Rendering through

LWJGL

B. Circle Drawing

B.1 Circle Equation Drawing

The circle is a frequently used component in pictures

and graphs, a procedure for generating either full

circles or circular arcs is included in most graphics

packages. More generally, a single procedure can be

provided to display either circular or elliptical curves.

A circle is defined as the set of points that are all at a

given distance R from a center position (Xc, Yc) .

This distance relationship is expressed by the

Pythagorean Theorem in Cartesian coordinates as

(X-Xc)2+(Y-Yc)2 = R2

Figure 4. Basic Circle Equation Drawing

for(x = -r; x <= r; x++)

y= SquareRoot of (r * r - (x * x));

Draw Pixel(xc+x,xc+y) forThe upper half

DrawPixel(xc+x,yc-y) for the lower half

Table 4. Basic Circle Equation Rendering through

LWJGL

Execution

no.

Machine

Execution

Time

Average

Time

1 163.138

170.3376

2 163.166

3 171.513

4 194.679

5 159.192

Time in Milliseconds

Chart 4. Basic Circle Equation Rendering through

LWJGL

B.1 Bresenham's Circle Drawing

The purpose of Bresenham’s circle algorithm is to

generate the set of points that approximate a circle

on a pixel-based display. We generate the points in

the first octant of the circle and then use symmetry

to generate the other seven octants. We start at (r, 0).

This pixel is chosen trivially. Next we need to find

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 780

the pixel for the y = 1 row. We must make a decision

between two candidate points.[2]

Figure 5. Eight Way Symmetry

Step 1: Set X = 0 and Y = R

Set D = 3 – 2R

Step 2: Repeat While (X < Y)

Call Draw Circle(Xc, Yc, X, Y)

Set X = X + 1

If (D < 0) Then

D = D + 4X + 6

Else

Set Y = Y – 1

D = D + 4(X – Y) + 10 [End of If]

Call Draw Circle(Xc, Yc, X, Y) [End of While]

Exit

Draw Circle (Xc, Yc, X, Y):

Call PutPixel(Xc + X, Yc, + Y)

Call PutPixel(Xc - X, Yc, + Y)

Call PutPixel(Xc + X, Yc, - Y)

Call PutPixel(Xc - X, Yc, - Y)

Call PutPixel(Xc + Y, Yc, + X)

Call PutPixel(Xc - Y, Yc, + X)

Call PutPixel(Xc + Y, Yc, - X)

Call PutPixel(Xc - Y, Yc, - X)

Exit

Table 5. Bresenham's Circle Rendering through

LWJGL

Execution

no.

Machine

Execution

Time

Average

Time

1 77.239

88.1312

2 42.876

3 98.883

4 122.418

5 99.240

Time in Milliseconds

Chart 5. Bresenham's Circle Rendering through

LWJGL

III. CONCLUSION

In this paper, there are two section of different

performance analysis on OpenGL. Three algorithms

are used to render lines, two algorithms are used to

render circles pixel by pixels. In our test and analysis,

we measures actual execution time for rendering

objects on the screen by Light Weight Java Game

Library. By this analysis we can develop large level

graphics applications like high definition games and

many more. Thus JWJGL, a java programming

binding for OpenGL seems to be a better choice for

developing games and other graphics applications

where achieving as high performance as possible is

the main priority.

IV. FUTURE WORK

Computer graphics is used today in many different

areas of industry, business, government, education,

entertainment, and most recently, the home. The list

of applications is enormous and is growing rapidly as

computers with graphics Capabilities become

commodity products. OpenGL is presently used to

produce both accurate and schematic representations

of geographical and other natural phenomena from

measurement data. Examples include geographic

maps, relief maps, exploration maps for drilling and

mining, oceanographic charts, weather maps,

contour maps, and population-density maps. These

algorithms for object drawings probably to create 2D

and 3D graphs of mathematical, physical, and

0

50

100

150

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 781

economic functions; histograms, bar and pie charts,

task-scheduling charts, inventory and production

charts.

V. REFERENCES

[1]. Development of the Bresenham’s Line Algorithm,

Alfred L. McKinney , K.K. Agarwal, Department

og Computer Science, Louisiana state university in

Shreveport , Shreveport , LA 71115

[2]. A Fast Bresenham Type Algorithm For Drawing

Circles by John Kennedy Mathematics Department

Santa Monica College 1900 Pico Blvd. Santa

Monica, CA 90405.

[3]. LWJGLTextures,

http://thecodinguniverse.com/lwjgl-textures/

[4]. Computer Graphics, Principles and Practice,

Second Edition, by James D.Foley, Andries van

Dam, Steven K. Feiner, John F. Hughes, Addison-

Wesley

[5]. Improved Line Drawing Algorithm: An Approach

and Proposal, Muhammad.Usman khan & Prof

(Dr) Md.Rizwan Beg, Integral University

Lucknow, India.

[6]. Prof. Sukhendu Das Dept. of Computer Science

and Engineering Indian Institute of Technology,

Madras Lecture - 13 Scan Converting Lines,

Circles and Ellipses.

[7]. OpenGL Programming Guide: The Official Guide

to Learning OpenGL, Version 2 by Dave Shreiner

[8]. Learning Java Bindings for OpenGL (JOGL) by

Gene Davis

[9]. Volume Rendering Using OpenGL and Extensions,

M. Meissner ; U. Hoffmann ; W. Strasser, IEEE,

1070-2385

